{"title":"Molecular characterization of bread wheat (Triticum aestivum) genotypes using SSR markers","authors":"SUMAN DEVI, VIKRAM SINGH, SHIKHA YASHVEER, MOHINDER SINGH DALAL, None PARAS, RUKOO CHAWLA, DARYA KHAN AKBARZAI, HARSH CHAURASIA","doi":"10.56093/ijas.v93i9.139173","DOIUrl":null,"url":null,"abstract":"An experiment was conducted during winter (rabi) seasons of 2019–20 and 2020–21 at the research farm of CCS Haryana Agricultural University to study the genetic diversity of 80 bread wheat (Triticum aestivum L.) genotypes, using 43 polymorphic SSR markers. A total of 84 alleles were discovered, with an average of 3 alleles amplified per locus. The average value of the allelic PIC varied from 0.26 to 0.82. Primers, viz. Xgwm 129, Xgwm 131, TaGST, CFA2147, Xwmc48, Xbarc 1165 and Xwmc169 may be deemed particularly informative given their high PIC values. Indices of dissimilarity varied from 0.14 to 0.42. Eighty wheat genotypes were clustered into two main groups with 35 and 45 genotypes each using the dendrogram constructed on the basis of molecular data of polymorphic markers. Using STRUCTURE, genotypes were classified into 4 major sub-populations having Fst values 0.351, 0.363, 0.508 and 0.313, respectively. Future breeding operations in wheat cultivars for tolerance to abiotic stress should consider genotypes clustering into different groups. Assessing the molecular genetic diversity is a reliable approach to identify cultivars by analyzing of specific regions of the cultivars DNA based on their unique genetic profiles.","PeriodicalId":13499,"journal":{"name":"Indian Journal of Agricultural Sciences","volume":"36 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56093/ijas.v93i9.139173","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An experiment was conducted during winter (rabi) seasons of 2019–20 and 2020–21 at the research farm of CCS Haryana Agricultural University to study the genetic diversity of 80 bread wheat (Triticum aestivum L.) genotypes, using 43 polymorphic SSR markers. A total of 84 alleles were discovered, with an average of 3 alleles amplified per locus. The average value of the allelic PIC varied from 0.26 to 0.82. Primers, viz. Xgwm 129, Xgwm 131, TaGST, CFA2147, Xwmc48, Xbarc 1165 and Xwmc169 may be deemed particularly informative given their high PIC values. Indices of dissimilarity varied from 0.14 to 0.42. Eighty wheat genotypes were clustered into two main groups with 35 and 45 genotypes each using the dendrogram constructed on the basis of molecular data of polymorphic markers. Using STRUCTURE, genotypes were classified into 4 major sub-populations having Fst values 0.351, 0.363, 0.508 and 0.313, respectively. Future breeding operations in wheat cultivars for tolerance to abiotic stress should consider genotypes clustering into different groups. Assessing the molecular genetic diversity is a reliable approach to identify cultivars by analyzing of specific regions of the cultivars DNA based on their unique genetic profiles.
期刊介绍:
The Indian Journal of Agricultural Sciences publishes papers concerned with the advancement of agriculture throughout the world. It publishes original scientific work related to strategic and applied studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance.
Specific topics of interest include (but are not confined to): genetic resources, all aspects of crop improvement,crop production,crop protection, physiology, modeling of crop systems, the scientific underpinning of agronomy, engineering solutions, decision support systems, land use, environmental impacts of agriculture and forestry, impacts of climate change, rural biodiversity, experimental design and statistical analysis, the application of new analytical and study methods (including molecular studies) and agricultural economics. The journal also publishes book reviews.
Articles are accepted on the following broad disciplines:
Agric. Engineering & Technology, Agric. Social & Economic Sci., Agronomy, Biometry, Biosciences, Cytology, Ecology, Environmental Sciences, Fertilization, Forestry , Genetics, Horticultural Sciences, Microbiology, Pest, Weed Control etc., Molecular Biology, Plant Pathology, Plant Breeding, Physiology and Biochemistry, Soil Sciences, Special Cultivation Technology, Stress Breeding, Agric. extension, and Cell Biology.