Constraints on subglacial melt fluxes from observations of active subglacial lake recharge

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Journal of Glaciology Pub Date : 2023-09-26 DOI:10.1017/jog.2023.70
George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg
{"title":"Constraints on subglacial melt fluxes from observations of active subglacial lake recharge","authors":"George Malczyk, Noel Gourmelen, Mauro Werder, Martin Wearing, Dan Goldberg","doi":"10.1017/jog.2023.70","DOIUrl":null,"url":null,"abstract":"Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"47 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.70","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Active subglacial lakes provide a rare glimpse of the subglacial environment and hydrological processes at play. Several studies contributed to establishing active subglacial lake inventories and document lake drainage and connection, but few focused on the period between lake drainage when the melt production and transport contribute to the refilling of these lakes. In this study, we employ high-resolution CryoSat-2 altimetry data from 2010 to 2021 to compile an inventory of recharging lakes across Antarctica. We extract recharge rates from these lakes, which serve as a lower limit on subglacial melt production. These recharge rates are compared against predictions obtained by routing modelled subglacial meltwater at the ice-sheet's base. Our findings indicate that modelled recharge rates are consistent with observations in all but one of the investigated lakes, providing a lower bound on geothermal heat fluxes. Lake Cook E2 displays recharge rates far exceeding predictions, indicating that processes are taking place that are currently unaccounted for. Considering recharge in hydrologically connected lake networks instead of individually provides a stricter constraint on melt production. Recharge rates extracted from the Thwaites Lake system suggest that subglacial melt production has been underestimated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰下活湖补给观测对冰下融水通量的制约
活跃的冰下湖泊提供了对冰下环境和水文过程的罕见一瞥。一些研究有助于建立活跃的冰下湖泊清单,并记录湖泊的排水和联系,但很少关注湖泊排水之间的时间,当融水的产生和运输有助于这些湖泊的补充。在这项研究中,我们使用了2010年至2021年的高分辨率CryoSat-2测高数据来编制南极洲各地补给湖的清单。我们从这些湖泊中提取补给速率,作为冰下融水产生的下限。这些补给速率与通过在冰盖底部模拟冰下融水得到的预测结果进行了比较。我们的研究结果表明,模拟的补给率与除一个外的所有调查湖泊的观测结果一致,提供了地热通量的下限。库克湖E2显示的补给率远远超过预测,表明目前尚未解释的过程正在发生。考虑在水文上相连的湖泊网络中而不是单独考虑补给,对熔体的产生提供了更严格的限制。从斯韦茨湖系统提取的补给速率表明,冰下融水的产生被低估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
期刊最新文献
Rift propagation signals the last act of the Thwaites Eastern Ice Shelf despite low basal melt rates Implications of high-resolution velocity and strain rate observations for modelling of Greenlandic tidewater glaciers Exploring canyons beneath Devon Ice Cap for sub-glacial drainage using radar and thermodynamic modeling Mechanical properties of pressure-frozen ice under triaxial compressive stress Retreat of the Greenland Ice Sheet leads to divergent patterns of reconfiguration at its freshwater and tidewater margins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1