首页 > 最新文献

Journal of Glaciology最新文献

英文 中文
DAS to discharge: using distributed acoustic sensing (DAS) to infer glacier runoff 利用分布式声学传感(DAS)推断冰川径流
IF 3.4 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Pub Date : 2024-08-27 DOI: 10.1017/jog.2024.46
John-Morgan Manos, Dominik Gräff, Eileen Rose Martin, Patrick Paitz, Fabian Walter, Andreas Fichtner, Bradley Paul Lipovsky
Observations of glacier melt and runoff are of fundamental interest in the study of glaciers and their interactions with their environment. Considerable recent interest has developed around distributed acoustic sensing (DAS), a sensing technique which utilizes Rayleigh backscatter in fiber optic cables to measure the seismo-acoustic wavefield in high spatial and temporal resolution. Here, we present data from a month-long, 9 km DAS deployment extending through the ablation and accumulation zones on Rhonegletscher, Switzerland, during the 2020 melt season. While testing several types of machine learning (ML) models, we establish a regression problem, using the DAS data as the dependent variable, to infer the glacier discharge observed at a proglacial stream gauge. We also compare two predictive models that only depend on meteorological station data. We find that the seismo-acoustic wavefield recorded by DAS can be utilized to infer proglacial discharge. Models using DAS data outperform the two models trained on meteorological data with mean absolute errors of 0.64, 2.25 and 2.72 m3 s−1, respectively. This study demonstrates the ability of in situ glacier DAS to be used for quantifying proglacial discharge and points the way to a new approach to measuring glacier runoff.
冰川融化和径流观测对于研究冰川及其与环境的相互作用具有重要意义。分布式声学传感(DAS)是一种利用光缆中的瑞利反向散射来测量高空间和时间分辨率地震-声学波场的传感技术,最近引起了广泛关注。在此,我们展示了 2020 年融化季节期间,在瑞士罗纳格莱彻进行的为期一个月、长达 9 公里的 DAS 部署所获得的数据。在测试几种机器学习(ML)模型的同时,我们利用 DAS 数据作为因变量,建立了一个回归问题,以推断在冰川溪流测量仪上观测到的冰川排放量。我们还比较了两个仅依赖气象站数据的预测模型。我们发现,可以利用 DAS 记录的地震-声波场来推断冰川的排泄量。使用 DAS 数据的模型优于根据气象数据训练的两个模型,其平均绝对误差分别为 0.64、2.25 和 2.72 m3 s-1。这项研究表明,原位冰川 DAS 能够用于量化冰川径流量,并为测量冰川径流量的新方法指明了方向。
{"title":"DAS to discharge: using distributed acoustic sensing (DAS) to infer glacier runoff","authors":"John-Morgan Manos, Dominik Gräff, Eileen Rose Martin, Patrick Paitz, Fabian Walter, Andreas Fichtner, Bradley Paul Lipovsky","doi":"10.1017/jog.2024.46","DOIUrl":"https://doi.org/10.1017/jog.2024.46","url":null,"abstract":"Observations of glacier melt and runoff are of fundamental interest in the study of glaciers and their interactions with their environment. Considerable recent interest has developed around distributed acoustic sensing (DAS), a sensing technique which utilizes Rayleigh backscatter in fiber optic cables to measure the seismo-acoustic wavefield in high spatial and temporal resolution. Here, we present data from a month-long, 9 km DAS deployment extending through the ablation and accumulation zones on Rhonegletscher, Switzerland, during the 2020 melt season. While testing several types of machine learning (ML) models, we establish a regression problem, using the DAS data as the dependent variable, to infer the glacier discharge observed at a proglacial stream gauge. We also compare two predictive models that only depend on meteorological station data. We find that the seismo-acoustic wavefield recorded by DAS can be utilized to infer proglacial discharge. Models using DAS data outperform the two models trained on meteorological data with mean absolute errors of 0.64, 2.25 and 2.72 m<jats:sup>3</jats:sup> s<jats:sup>−1</jats:sup>, respectively. This study demonstrates the ability of in situ glacier DAS to be used for quantifying proglacial discharge and points the way to a new approach to measuring glacier runoff.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vulnerability of firn to hydrofracture: poromechanics modeling 枞树对水力断裂的脆弱性:孔力学建模
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-05 DOI: 10.1017/jog.2024.47
Yue Meng, R. Culberg, Ching-Yao Lai
: On the Greenland Ice Sheet, hydrofracture connects the supraglacial and subglacial hydrologic systems, coupling surface runoff dynamics and ice velocity. Over the last two decades, the growth of low-permeability ice slabs in the firn above the equilibrium line has expanded Greenland’s runoff zone, but the vulnerability of these regions to hydrofracture is still poorly understood. Observations from Northwest Greenland suggest that when meltwater drains through crevasses in ice slabs, it is stored in the underlying relict firn layer and does not reach the ice sheet bed. Here, we use poromechanics to investigate whether water-filled crevasses in ice slabs can propagate vertically through a firn layer. Based on numerical simulations, we develop an analytical estimate of the water injection-induced effective stress in the firn given the water level in the
:在格陵兰冰原上,水文断裂连接着冰上和冰下水文系统,将地表径流动力学和冰速联系在一起。在过去的二十年里,平衡线以上的枞树层中低渗透性冰板的生长扩大了格陵兰的径流区,但人们对这些区域易受水文断裂影响的程度仍然知之甚少。格陵兰西北部的观测结果表明,当融水通过冰板上的裂缝排出时,会被储存在下层的残余枞树层中,而不会到达冰原床。在这里,我们利用孔隙力学研究冰板中充满水的裂缝是否能垂直穿过枞树层。在数值模拟的基础上,我们对注水引起的枞树层有效应力进行了分析估计,并给出了枞树层的水位。
{"title":"Vulnerability of firn to hydrofracture: poromechanics modeling","authors":"Yue Meng, R. Culberg, Ching-Yao Lai","doi":"10.1017/jog.2024.47","DOIUrl":"https://doi.org/10.1017/jog.2024.47","url":null,"abstract":": On the Greenland Ice Sheet, hydrofracture connects the supraglacial and subglacial hydrologic systems, coupling surface runoff dynamics and ice velocity. Over the last two decades, the growth of low-permeability ice slabs in the firn above the equilibrium line has expanded Greenland’s runoff zone, but the vulnerability of these regions to hydrofracture is still poorly understood. Observations from Northwest Greenland suggest that when meltwater drains through crevasses in ice slabs, it is stored in the underlying relict firn layer and does not reach the ice sheet bed. Here, we use poromechanics to investigate whether water-filled crevasses in ice slabs can propagate vertically through a firn layer. Based on numerical simulations, we develop an analytical estimate of the water injection-induced effective stress in the firn given the water level in the","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141383002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvements on the discretisation of boundary conditions to the momentum balance for glacial ice 冰川冰动量平衡边界条件离散化的改进
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-04 DOI: 10.1017/jog.2024.45
Constantijn J. Berends, R. V. D. van de Wal, P. Zegeling
{"title":"Improvements on the discretisation of boundary conditions to the momentum balance for glacial ice","authors":"Constantijn J. Berends, R. V. D. van de Wal, P. Zegeling","doi":"10.1017/jog.2024.45","DOIUrl":"https://doi.org/10.1017/jog.2024.45","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141265682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse behaviors of marine ice sheets in response to temporal variability of the atmospheric and basal conditions 海洋冰原因大气和基底条件的时间变化而表现出的不同行为
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-03 DOI: 10.1017/jog.2024.43
O. Sergienko, Duncan Wingham
{"title":"Diverse behaviors of marine ice sheets in response to temporal variability of the atmospheric and basal conditions","authors":"O. Sergienko, Duncan Wingham","doi":"10.1017/jog.2024.43","DOIUrl":"https://doi.org/10.1017/jog.2024.43","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signal characteristics of surface seismic explosive sources near the West Antarctic Ice Sheet divide 南极西部冰原分界线附近地表地震爆炸源的信号特征
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-05-08 DOI: 10.1017/jog.2024.41
Marianne Karplus, Nori Nakata, G. Kaip, Steven H. Harder, Lucia F. Gonzalez, Adam D. Booth, Emma C. Smith, S. Veitch, Jacob I. Walter, Poul Christoffersen
{"title":"Signal characteristics of surface seismic explosive sources near the West Antarctic Ice Sheet divide","authors":"Marianne Karplus, Nori Nakata, G. Kaip, Steven H. Harder, Lucia F. Gonzalez, Adam D. Booth, Emma C. Smith, S. Veitch, Jacob I. Walter, Poul Christoffersen","doi":"10.1017/jog.2024.41","DOIUrl":"https://doi.org/10.1017/jog.2024.41","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica 在南极洲乔治六世冰架上观察到的融水引起的挠曲和断裂
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-05-03 DOI: 10.1017/jog.2024.31
Alison F. Banwell, Ian C. Willis, Laura A. Stevens, Rebecca L. Dell, Douglas R. MacAyeal
Global Navigation Satellite System (GNSS) observations and ground-based timelapse photography obtained over the record-high 2019/2020 melt season are combined to characterise the flexure and fracture behaviour of a previously formed doline on George VI Ice Shelf, Antarctica. The GNSS timeseries shows a downward vertical displacement of the doline centre with respect to the doline rim of ~60 cm in response to loading from a central meltwater lake. The GNSS data also show a tens-of-days episode of rapid-onset, exponentially decaying horizontal displacement, where the horizontal distance between the doline rim and its centre increases by ~70 cm. We interpret this event as the initiation and/or widening of a fracture, aided by stress perturbations associated with meltwater loading in the doline basin. Viscous flexure modelling indicates that the meltwater loading generates tensile surface stresses exceeding 75 kPa. This, together with our timelapse photos of circular fractures around the doline, suggests the first such documentation of meltwater-loading-induced ‘ring fracture’ formation on an ice shelf, equivalent to the fracture type proposed as part of the chain-reaction lake drainage process involved in the 2002 breakup of the Larsen B Ice Shelf.
全球导航卫星系统(GNSS)观测数据与在创纪录的 2019/2020 年融化季节获得的地面延时摄影相结合,描述了南极洲乔治六世冰架上先前形成的多林的挠曲和断裂行为特征。全球导航卫星系统时间序列显示,在中央融水湖的荷载作用下,穹隆中心相对于穹隆边缘向下垂直位移约 60 厘米。全球导航卫星系统的数据还显示,在十几天的时间里,水平位移快速发生,并呈指数衰减,在这段时间里,穹隆边缘与其中心之间的水平距离增加了约 70 厘米。我们将这一事件解释为断裂的开始和/或扩大,与多林盆地融水负荷相关的应力扰动起到了辅助作用。粘性挠曲模型表明,融水荷载产生的拉伸表面应力超过 75 千帕。这与我们拍摄的多林周围环形断裂的延时照片一起,首次证明了融水荷载在冰架上引起的 "环形断裂 "的形成,这与 2002 年拉森 B 冰架断裂时提出的链式反应湖排水过程中的断裂类型相同。
{"title":"Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica","authors":"Alison F. Banwell, Ian C. Willis, Laura A. Stevens, Rebecca L. Dell, Douglas R. MacAyeal","doi":"10.1017/jog.2024.31","DOIUrl":"https://doi.org/10.1017/jog.2024.31","url":null,"abstract":"Global Navigation Satellite System (GNSS) observations and ground-based timelapse photography obtained over the record-high 2019/2020 melt season are combined to characterise the flexure and fracture behaviour of a previously formed doline on George VI Ice Shelf, Antarctica. The GNSS timeseries shows a downward vertical displacement of the doline centre with respect to the doline rim of ~60 cm in response to loading from a central meltwater lake. The GNSS data also show a tens-of-days episode of rapid-onset, exponentially decaying horizontal displacement, where the horizontal distance between the doline rim and its centre increases by ~70 cm. We interpret this event as the initiation and/or widening of a fracture, aided by stress perturbations associated with meltwater loading in the doline basin. Viscous flexure modelling indicates that the meltwater loading generates tensile surface stresses exceeding 75 kPa. This, together with our timelapse photos of circular fractures around the doline, suggests the first such documentation of meltwater-loading-induced ‘ring fracture’ formation on an ice shelf, equivalent to the fracture type proposed as part of the chain-reaction lake drainage process involved in the 2002 breakup of the Larsen B Ice Shelf.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevation bias due to penetration of spaceborne radar signal on Grosser Aletschgletscher, Switzerland 瑞士 Grosser Aletschgletscher 航天雷达信号穿透造成的高程偏差
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-04-30 DOI: 10.1017/jog.2024.37
Jacqueline Bannwart, Livia Piermattei, Inés Dussaillant, Lukas Krieger, Dana Floricioiu, Etienne Berthier, Claudia Roeoesli, Horst Machguth, Michael Zemp

Digital elevation models (DEMs) from the spaceborne interferometric radar mission TanDEM-X hold a large potential for glacier change assessments. However, a bias is potentially introduced through the penetration of the X-band signal into snow and firn. To improve our understanding of radar penetration on glaciers, we compare DEMs derived from the almost synchronous acquisition of TanDEM-X and Pléiades optical stereo-images of Grosser Aletschgletscher in March 2021. We found that the elevation bias – averaged per elevation bin – can reach up to 4–8 m in the accumulation area, depending on post co-registration corrections. Concurrent in situ measurements (ground-penetrating radar, snow cores, snow pits) reveal that the signal is not obstructed by the last summer horizon but reaches into perennial firn. Because of volume scattering, the TanDEM-X surface is determined by the scattering phase centre and does not coincide with a specific firn layer. We show that the bias corresponds to more than half of the decadal ice loss rate. To minimize the radar penetration bias, we recommend to select DEMs from the same time of the year and over long observation periods. A correction of the radar penetration bias is recommended, especially when combining optical and TanDEM-X DEMs.

由空间干涉雷达任务 TanDEM-X 生成的数字高程模型(DEM)在冰川变化评估方面具有很大的潜力。然而,X 波段信号对雪和杉林的穿透可能会造成偏差。为了更好地了解雷达对冰川的穿透作用,我们比较了 2021 年 3 月几乎同步采集的 TanDEM-X 和 Pléiades 光学立体图像得出的 Grosser Aletschgletscher 的 DEM。我们发现,在积雪区,每个高程分区的平均高程偏差可达 4-8 米,这取决于后期的共线校正。同时进行的实地测量(地面穿透雷达、雪芯、雪坑)显示,信号没有被最后的夏季地平线阻挡,而是直达多年生杉林。由于体积散射,TanDEM-X 表面由散射相位中心决定,并不与特定的杉林层相吻合。我们的研究表明,该偏差相当于十年冰损失率的一半以上。为了最大限度地减少雷达穿透偏差,我们建议选择一年中同一时段和长时间观测的 DEM。建议对雷达穿透偏差进行校正,尤其是在结合光学和 TanDEM-X DEM 时。
{"title":"Elevation bias due to penetration of spaceborne radar signal on Grosser Aletschgletscher, Switzerland","authors":"Jacqueline Bannwart, Livia Piermattei, Inés Dussaillant, Lukas Krieger, Dana Floricioiu, Etienne Berthier, Claudia Roeoesli, Horst Machguth, Michael Zemp","doi":"10.1017/jog.2024.37","DOIUrl":"https://doi.org/10.1017/jog.2024.37","url":null,"abstract":"<p>Digital elevation models (DEMs) from the spaceborne interferometric radar mission TanDEM-X hold a large potential for glacier change assessments. However, a bias is potentially introduced through the penetration of the X-band signal into snow and firn. To improve our understanding of radar penetration on glaciers, we compare DEMs derived from the almost synchronous acquisition of TanDEM-X and Pléiades optical stereo-images of Grosser Aletschgletscher in March 2021. We found that the elevation bias – averaged per elevation bin – can reach up to 4–8 m in the accumulation area, depending on post co-registration corrections. Concurrent in situ measurements (ground-penetrating radar, snow cores, snow pits) reveal that the signal is not obstructed by the last summer horizon but reaches into perennial firn. Because of volume scattering, the TanDEM-X surface is determined by the scattering phase centre and does not coincide with a specific firn layer. We show that the bias corresponds to more than half of the decadal ice loss rate. To minimize the radar penetration bias, we recommend to select DEMs from the same time of the year and over long observation periods. A correction of the radar penetration bias is recommended, especially when combining optical and TanDEM-X DEMs.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved processing methods for eddy covariance measurements in calculating sensible heat fluxes at glacier surfaces 在计算冰川表面显热通量时改进涡度协方差测量的处理方法
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-04-30 DOI: 10.1017/jog.2024.39
Cole Lord-May, Valentina Radić

Bulk aerodynamic methods have been shown to perform poorly in computing turbulent heat fluxes at glacier surfaces during shallow katabatic winds. Katabatic surface layers have different wind shear and flux profiles to the surface layers for which the bulk methods were developed, potentially invalidating their use in these conditions. In addition, eddy covariance-derived turbulent heat fluxes are unlikely to be representative of surface conditions when eddy covariance data are collected close to the wind speed maximum (WSM). Here we utilize two months of eddy covariance and meteorological data measured at three different heights (1 m, 2 m, and 3 m) at Kaskawulsh Glacier in the Yukon, Canada, to re-examine the performance of bulk methods relative to eddy covariance-derived fluxes under different near-surface flow regimes. We propose a new set of processing methods for one-level eddy covariance data to ensure the validity of calculated fluxes during highly variable flows and low-level wind speed maxima, which leads to improved agreement between eddy covariance-derived and modelled fluxes across all flow regimes, with the best agreement (correlation >0.9) 1 m above the surface. Contrary to previous studies, these results show that adequately processed eddy covariance data collected at or above the WSM can provide valid estimates of surface heat fluxes.

大量空气动力学方法在计算浅层卡塔巴赫风时冰川表面的湍流热通量时表现不佳。卡巴平流表层的风切变和通量剖面不同于体动力学方法所针对的表层,因此在这些条件下使用体动力学方法可能无效。此外,在靠近最大风速(WSM)的地方收集涡度协方差数据时,涡度协方差得出的湍流热通量不太可能代表地表条件。在这里,我们利用在加拿大育空地区卡斯卡沃什冰川的三个不同高度(1 米、2 米和 3 米)测量的两个月涡度协方差和气象数据,重新检验了在不同的近地表流态下,大量方法相对于涡度协方差衍生通量的性能。我们为单级涡度协方差数据提出了一套新的处理方法,以确保在高度变化的流动和低层风速最大值时计算通量的有效性,从而提高了涡度协方差推导通量与模拟通量在所有流动状态下的一致性,其中距地表 1 米处的一致性最好(相关性为 0.9)。与之前的研究相反,这些结果表明,在 WSM 或 WSM 以上采集的涡度协方差数据经过充分处理后,可以提供有效的地表热通量估计值。
{"title":"Improved processing methods for eddy covariance measurements in calculating sensible heat fluxes at glacier surfaces","authors":"Cole Lord-May, Valentina Radić","doi":"10.1017/jog.2024.39","DOIUrl":"https://doi.org/10.1017/jog.2024.39","url":null,"abstract":"<p>Bulk aerodynamic methods have been shown to perform poorly in computing turbulent heat fluxes at glacier surfaces during shallow katabatic winds. Katabatic surface layers have different wind shear and flux profiles to the surface layers for which the bulk methods were developed, potentially invalidating their use in these conditions. In addition, eddy covariance-derived turbulent heat fluxes are unlikely to be representative of surface conditions when eddy covariance data are collected close to the wind speed maximum (WSM). Here we utilize two months of eddy covariance and meteorological data measured at three different heights (1 m, 2 m, and 3 m) at Kaskawulsh Glacier in the Yukon, Canada, to re-examine the performance of bulk methods relative to eddy covariance-derived fluxes under different near-surface flow regimes. We propose a new set of processing methods for one-level eddy covariance data to ensure the validity of calculated fluxes during highly variable flows and low-level wind speed maxima, which leads to improved agreement between eddy covariance-derived and modelled fluxes across all flow regimes, with the best agreement (correlation &gt;0.9) 1 m above the surface. Contrary to previous studies, these results show that adequately processed eddy covariance data collected at or above the WSM can provide valid estimates of surface heat fluxes.</p>","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-term calving front dynamics and mass loss at Sálajiegna glacier, northern Sweden, assessed by uncrewed surface and aerial vehicles 瑞典北部 Sálajiegna 冰川的短期崩塌前沿动态和质量损失,由无人驾驶的地面和空中飞行器进行评估
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-04-24 DOI: 10.1017/jog.2024.34
Florian Vacek, Clemens Deutsch, Jakob Kuttenkeuler, Nina Kirchner
{"title":"Short-term calving front dynamics and mass loss at Sálajiegna glacier, northern Sweden, assessed by uncrewed surface and aerial vehicles","authors":"Florian Vacek, Clemens Deutsch, Jakob Kuttenkeuler, Nina Kirchner","doi":"10.1017/jog.2024.34","DOIUrl":"https://doi.org/10.1017/jog.2024.34","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential threats of glacial lake changes to the Sichuan-Tibet Railway 冰湖变化对川藏公路的潜在威胁
IF 3.4 3区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-04-22 DOI: 10.1017/jog.2024.40
Menger Peng, Guoqing Zhang, Jinyuan Yu, Weicai Wang, Fenglin Xu, Sonam Rinzin
{"title":"Potential threats of glacial lake changes to the Sichuan-Tibet Railway","authors":"Menger Peng, Guoqing Zhang, Jinyuan Yu, Weicai Wang, Fenglin Xu, Sonam Rinzin","doi":"10.1017/jog.2024.40","DOIUrl":"https://doi.org/10.1017/jog.2024.40","url":null,"abstract":"","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Glaciology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1