Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie catchment, South Africa

IF 2.5 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Vadose Zone Journal Pub Date : 2023-09-26 DOI:10.1002/vzj2.20280
Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol
{"title":"Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie catchment, South Africa","authors":"Edward Smit, George van Zijl, Eddie Riddell, Johan van Tol","doi":"10.1002/vzj2.20280","DOIUrl":null,"url":null,"abstract":"Abstract Detailed soil information is increasingly sought after for watershed‐scale hydrological modeling to better understand the soil–water interactions at a landscape level. In South Africa, 8% of the surface area is responsible for 50% of the mean annual runoff. Thus, understanding the soil–water dynamics in these catchments remains imperative to future water resource management. In this study, the value of hydropedological information is tested by comparing a detailed hydropedological map based on infield soil information to the best readily available soil information at five different catchment sizes (48, 56, 174, 674, and 2421 km 2 ) using the soil and water assessment tool (SWAT)+ model in the Sabie catchment, South Africa. The aim was to determine the value of hydropedological information at different scales as well as illustrate the value of hydropedology as soft data to improve hydrological process representation. Improved hydropedological information significantly improved long‐term streamflow simulations at all catchment sizes, except for the largest catchment (2421 km 2 ). It is assumed that the resulting improved streamflow simulations are a direct result of the improved hydrological process representation achieved by the hydropedological information. Here, we argue that hydropedological information should form an important soft data tool to better understand and simulate different hydrological processes.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"42 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vzj2.20280","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Detailed soil information is increasingly sought after for watershed‐scale hydrological modeling to better understand the soil–water interactions at a landscape level. In South Africa, 8% of the surface area is responsible for 50% of the mean annual runoff. Thus, understanding the soil–water dynamics in these catchments remains imperative to future water resource management. In this study, the value of hydropedological information is tested by comparing a detailed hydropedological map based on infield soil information to the best readily available soil information at five different catchment sizes (48, 56, 174, 674, and 2421 km 2 ) using the soil and water assessment tool (SWAT)+ model in the Sabie catchment, South Africa. The aim was to determine the value of hydropedological information at different scales as well as illustrate the value of hydropedology as soft data to improve hydrological process representation. Improved hydropedological information significantly improved long‐term streamflow simulations at all catchment sizes, except for the largest catchment (2421 km 2 ). It is assumed that the resulting improved streamflow simulations are a direct result of the improved hydrological process representation achieved by the hydropedological information. Here, we argue that hydropedological information should form an important soft data tool to better understand and simulate different hydrological processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考察南非萨比流域不同尺度水文模型的水文水文信息的价值
为了更好地理解景观水平上的土壤-水相互作用,流域尺度水文建模越来越需要详细的土壤信息。在南非,8%的地表面积产生了50%的年平均径流量。因此,了解这些流域的土壤-水动力学对未来的水资源管理仍然是必不可少的。在这项研究中,通过将基于内场土壤信息的详细水文土壤图与最容易获得的土壤信息进行比较,利用土壤和水评估工具(SWAT)+模型,在南非Sabie流域进行了5个不同流域(48、56、174、674和2421 km2)的水文土壤信息的价值。目的是确定不同尺度水文水文信息的价值,并说明水文水文作为软数据的价值,以改善水文过程的表征。改善的水文水文信息显著改善了所有流域的长期流量模拟,除了最大的流域(2421 km2)。假设由此得到的改进的水流模拟是由水文水文信息实现的改进的水文过程表示的直接结果。在这里,我们认为水文信息应该成为一个重要的软数据工具,以更好地理解和模拟不同的水文过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vadose Zone Journal
Vadose Zone Journal 环境科学-环境科学
CiteScore
5.60
自引率
7.10%
发文量
61
审稿时长
3.8 months
期刊介绍: Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.
期刊最新文献
Soil water content estimation by using ground penetrating radar data full waveform inversion with grey wolf optimizer algorithm Joint multiscale dynamics in soil–vegetation–atmosphere systems: Multifractal cross‐correlation analysis of arid and semiarid rangelands Soil hydraulic property maps for the contiguous United States at 100‐m resolution and seven depths: Code design and preliminary results Inverse analysis of soil hydraulic parameters of layered soil profiles using physics‐informed neural networks with unsaturated water flow models Quantitative experimental study on the apparent contact angle of unsaturated loess and its application in soil–water characteristics curve modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1