首页 > 最新文献

Vadose Zone Journal最新文献

英文 中文
Modified expression for hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low‐pressure heads 根据Mualem–van Genuchten修改的导水率表达式,以便在低压水头下进行正确计算
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-09-07 DOI: 10.1002/vzj2.20279
Marius Heinen
Water retention and hydraulic conductivity characteristics are key input data in studies on soil water dynamics in the vadose zone. The most well‐known analytical functions to describe these characteristics are those given by Mualem and van Genuchten, where van Genuchten showed that both can be described by a limited set of shared parameters. Analytically, there are no restrictions on the range of pressure heads for which these characteristics can be used. Experience, however, has shown that for certain sets of parameters, the hydraulic conductivity cannot be computed accurately at low‐pressure heads. This is due to the accuracy of (double precision) floating point operations in computer code. It is shown that for low‐pressure heads, the Mualem function approaches a power function. An adapted version of the Mualem–van Genuchten (MvG) expression for the hydraulic conductivity is proposed: between saturation and a soil‐dependent critical pressure head, the classical Mualem expression is valid and below this critical pressure head a power function is used. The power function is defined such that it matches the Mualem value at the critical pressure head. No accuracy problems will occur when using the power function until the result approaches the smallest possible (double precision) floating point value that significantly differs from zero.
保水性和导水性是渗流带土壤水分动力学研究的关键输入数据。描述这些特征的最著名的分析函数是Mualem和van Genuchten给出的分析函数,其中van Genuchsten表明两者都可以用一组有限的共享参数来描述。从分析角度来看,可以使用这些特性的压头范围没有限制。然而,经验表明,对于某些参数组,无法在低压水头下准确计算水力传导率。这是由于计算机代码中(双精度)浮点运算的准确性。研究表明,对于低压水头,Mualem函数接近幂函数。提出了一种适用于导水率的Mualem–van Genuchten(MvG)表达式:在饱和和土壤相关临界压头之间,经典Mualem表达式是有效的,在该临界压头以下使用幂函数。功率函数的定义使其与临界压头处的Mualem值相匹配。使用幂函数时不会出现精度问题,直到结果接近与零显著不同的最小可能(双精度)浮点值。
{"title":"Modified expression for hydraulic conductivity according to Mualem–van Genuchten to allow proper computations at low‐pressure heads","authors":"Marius Heinen","doi":"10.1002/vzj2.20279","DOIUrl":"https://doi.org/10.1002/vzj2.20279","url":null,"abstract":"Water retention and hydraulic conductivity characteristics are key input data in studies on soil water dynamics in the vadose zone. The most well‐known analytical functions to describe these characteristics are those given by Mualem and van Genuchten, where van Genuchten showed that both can be described by a limited set of shared parameters. Analytically, there are no restrictions on the range of pressure heads for which these characteristics can be used. Experience, however, has shown that for certain sets of parameters, the hydraulic conductivity cannot be computed accurately at low‐pressure heads. This is due to the accuracy of (double precision) floating point operations in computer code. It is shown that for low‐pressure heads, the Mualem function approaches a power function. An adapted version of the Mualem–van Genuchten (MvG) expression for the hydraulic conductivity is proposed: between saturation and a soil‐dependent critical pressure head, the classical Mualem expression is valid and below this critical pressure head a power function is used. The power function is defined such that it matches the Mualem value at the critical pressure head. No accuracy problems will occur when using the power function until the result approaches the smallest possible (double precision) floating point value that significantly differs from zero.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48366105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonality and evaporation of water resources in Reynolds Creek Experimental Watershed and Critical Zone Observatory, Southwestern Idaho, USA 美国爱达荷州西南部雷诺兹河实验流域和临界带观测站水资源的季节性和蒸发
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-08-31 DOI: 10.1002/vzj2.20278
M. Schlegel, Jennifer Souza, S. Warix, R. MacNeille, E. Murray, A. Radke, S. Godsey, M. Seyfried, B. Finney, G. Flerchinger, K. Lohse
The Reynolds Creek Experimental Watershed (RCEW) and Critical Zone Observatory (CZO), located south of the western Snake River Plain in the Intermountain West of the United States, is the site of over 60 years of research aimed at understanding integrated earth processes in a semi‐arid climate to aid sustainable use of environmental resources. Meteoric water lines (MWLs) are used to interpret hydrologic processes, though equilibrium and nonequilibrium processes affect the linear function and can reveal seasonal and climatological effects, necessitating the development of local meteoric water lines (LMWLs). At RCEW‐CZO, an RCEW LMWL was developed using non‐volume‐weighted, orthogonal regression with assumed error in both predictor and response variables from several years of precipitation (2015, 2017, 2019, 2020, and 2021) primarily at three different elevations (1203, 1585, and 2043 m). As most precipitation is evaporated or intercepted by vegetation in the driest months, an RCEW LMWL for groundwater recharge (RCEW LMWL‐GWR) was also developed using precipitation from the wettest months (November through April). The RCEW LMWL (δ2H = 7.41 × δ18O – 3.09) is different from the RCEW LMWL‐GWR (δ2H = 8.21 × δ18O + 9.95) and compares favorably to other LMWLs developed for the region and climate. Comparative surface, spring, and subsurface water datasets within the RCEW‐CZO are more similar to precipitation during the wettest months than dry months, illustrating that some semi‐arid hydrologic systems may most appropriately be compared to MWLs developed from precipitation only from the wettest season.
Reynolds Creek实验流域(RCEW)和临界区观测站(CZO)位于美国西部山间的西斯内克河平原以南,是进行了60多年研究的地方,旨在了解半干旱气候下的综合地球过程,以帮助可持续利用环境资源。气象水线(MWL)用于解释水文过程,尽管平衡和非平衡过程会影响线性函数,并可以揭示季节和气候效应,因此有必要开发当地的气象水线(LMWLs)。在RCEW‐CZO,使用非体积加权正交回归法开发了RCEW LMWL,并假设了几年降水量(2015、2017、2019、2020和2021)的预测变量和响应变量的误差,主要分布在三个不同海拔(1203、1585和2043 m)。由于大多数降水在最干旱的月份被植被蒸发或拦截,因此还利用最潮湿月份(11月至4月)的降水制定了用于地下水补给的RCEW LMWL(RCEW LMW‐GWR)。RCEW LMWL(δ2H=7.41×δ18O–3.09)不同于RCEW LMWL‐GWR(δ2H=8.21×Δ18O+9.95),并且与针对该地区和气候开发的其他LMWL相比是有利的。RCEW‐CZO内的地表水、泉水和地下水数据集与最潮湿月份的降水量相比,更为相似,这表明一些半干旱的水文系统可以最恰当地与仅从最潮湿季节的降水量发展而来的MWL进行比较。
{"title":"Seasonality and evaporation of water resources in Reynolds Creek Experimental Watershed and Critical Zone Observatory, Southwestern Idaho, USA","authors":"M. Schlegel, Jennifer Souza, S. Warix, R. MacNeille, E. Murray, A. Radke, S. Godsey, M. Seyfried, B. Finney, G. Flerchinger, K. Lohse","doi":"10.1002/vzj2.20278","DOIUrl":"https://doi.org/10.1002/vzj2.20278","url":null,"abstract":"The Reynolds Creek Experimental Watershed (RCEW) and Critical Zone Observatory (CZO), located south of the western Snake River Plain in the Intermountain West of the United States, is the site of over 60 years of research aimed at understanding integrated earth processes in a semi‐arid climate to aid sustainable use of environmental resources. Meteoric water lines (MWLs) are used to interpret hydrologic processes, though equilibrium and nonequilibrium processes affect the linear function and can reveal seasonal and climatological effects, necessitating the development of local meteoric water lines (LMWLs). At RCEW‐CZO, an RCEW LMWL was developed using non‐volume‐weighted, orthogonal regression with assumed error in both predictor and response variables from several years of precipitation (2015, 2017, 2019, 2020, and 2021) primarily at three different elevations (1203, 1585, and 2043 m). As most precipitation is evaporated or intercepted by vegetation in the driest months, an RCEW LMWL for groundwater recharge (RCEW LMWL‐GWR) was also developed using precipitation from the wettest months (November through April). The RCEW LMWL (δ2H = 7.41 × δ18O – 3.09) is different from the RCEW LMWL‐GWR (δ2H = 8.21 × δ18O + 9.95) and compares favorably to other LMWLs developed for the region and climate. Comparative surface, spring, and subsurface water datasets within the RCEW‐CZO are more similar to precipitation during the wettest months than dry months, illustrating that some semi‐arid hydrologic systems may most appropriately be compared to MWLs developed from precipitation only from the wettest season.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41582368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupling non‐invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone 耦合无创成像和反应性转运模型研究根区的水和氧动力学
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-08-10 DOI: 10.1002/vzj2.20268
S. Bereswill, Hannah Gatz‐Miller, D. Su, C. Tötzke, N. Kardjilov, S. Oswald, K. Mayer
Oxygen (O2) availability in soils is vital for plant growth and productivity. The transport and consumption of O2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three‐dimensional root system architecture and the spatiotemporal dynamics of soil moisture (θ) and O2 concentrations in the root zone of maize (Zea mays) via non‐invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non‐invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured θ and O2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten α and n), better reproduced the measured θ and O2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.
土壤中的氧气(O2)有效性对植物生长和生产力至关重要。O2在根区的迁移和消耗与土壤含水量、根的空间分布以及周围土壤的结构和异质性密切相关。在本研究中,我们通过非侵入性成像测量了玉米(Zea mays)根系的三维结构以及根区土壤水分(θ)和O2浓度的时空动态,然后基于实验数据构建了反应迁移模型并将其参数化。三种非侵入性成像方法的结合允许在高空间和时间分辨率下将模拟结果与观测结果进行直接比较。在三种不同的建模场景中,我们研究了模型中不同概念复杂性水平的结果如何能够匹配测量的θ和O2浓度模式。我们发现,考虑到非均质土壤结构和水力参数(渗透率、孔隙度和van Genuchtenα和n)的空间变异性的建模场景,相对于具有均质土壤域的简单模型,更好地再现了测量的θ和O2模式。我们组合成像和建模分析的结果表明,实验O2和水动力学可以在反应传输模型中定量再现,并且当特定系统特有的条件超出根的分布时,如土壤结构及其对水饱和度的影响和宏观气体输送途径。
{"title":"Coupling non‐invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone","authors":"S. Bereswill, Hannah Gatz‐Miller, D. Su, C. Tötzke, N. Kardjilov, S. Oswald, K. Mayer","doi":"10.1002/vzj2.20268","DOIUrl":"https://doi.org/10.1002/vzj2.20268","url":null,"abstract":"Oxygen (O2) availability in soils is vital for plant growth and productivity. The transport and consumption of O2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three‐dimensional root system architecture and the spatiotemporal dynamics of soil moisture (θ) and O2 concentrations in the root zone of maize (Zea mays) via non‐invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non‐invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured θ and O2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten α and n), better reproduced the measured θ and O2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49112372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate of herbicides in cropped lysimeters: 2. Leaching of four maize herbicides considering different processes 除草剂在作物溶渗仪中的命运:2。四种玉米除草剂不同浸出过程的研究
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-08-04 DOI: 10.1002/vzj2.20275
Anne Imig, Lea Augustin, J. Groh, T. Pütz, Martin Elsner, F. Einsiedl, A. Rein
This study investigates the contamination potential of herbicides to groundwater with the help of numerical modeling (HYDRUS‐1D) and stable carbon isotopes for characterizing biodegradation. Four herbicides, metolachlor, terbuthylazine, prosulfuron, and nicosulfuron, were applied over a period of 4.5 years on two lysimeters located in Wielenbach, Germany, and monitored by lysimeter drainage. These lysimeters contained soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2) and were both cropped with maize (Zea mays). In the preceding study, we characterized flow within the lysimeters by using stable water isotopes and unsaturated flow models. Building up on these findings, models were extended for describing reactive transport of the herbicides and investigating process contributions. At the end of the experiment, 0.9%–15.9% of the applied herbicides (up to 20.9% if including metabolites) were recovered by lysimeter drainage. Metabolite formation and accumulation was observed, and biodegradation was also indicated by small changes in carbon isotope signals (δ13C) between applied and leached herbicides. Model setups could describe the dynamics of herbicide concentrations in lysimeter drainage well. Concentration peaks in drainage were partly also linked with strong precipitation events, indicating preferential flow influence. The soil core with the coarser texture (Ly1) showed less herbicide leaching than the finer texture (Ly2), which can be explained by a larger mobile phase in Ly1. Overall, our approaches and findings contribute to the understanding of multi‐process herbicide transport in the vadose zone and leaching potentials to groundwater, where δ13C can provide valuable hints for microbial degradation.
本研究借助数值模拟(HYDRUS‐1D)和稳定碳同位素来表征生物降解,研究除草剂对地下水的污染潜力。四种除草剂,甲草胺、特丁嗪、原磺隆和烟嘧磺隆,在位于德国维伦巴赫的两台蒸渗仪上使用了4.5年,并通过蒸渗仪排水进行监测。这些蒸渗仪包含以砂砾(Ly1)和粘质砂质粉土(Ly2)为主的岩芯,并且都种植了玉米(玉米)。在之前的研究中,我们通过使用稳定的水同位素和不饱和流动模型来表征蒸渗计内的流动。在这些发现的基础上,模型被扩展用于描述除草剂的反应性转运和调查过程贡献。在实验结束时,0.9%–15.9%的施用除草剂(如果包括代谢物,则高达20.9%)通过溶解计排水回收。观察到代谢产物的形成和积累,施用和浸出除草剂之间碳同位素信号(δ13C)的微小变化也表明了生物降解。模型设置可以描述溶渗计排水井中除草剂浓度的动态。排水中的浓度峰值也部分与强降水事件有关,表明优先流量影响。质地较粗的岩芯(Ly1)比质地较细的岩芯(Ly2)表现出较少的除草剂浸出,这可以通过Ly1中较大的流动相来解释。总的来说,我们的方法和发现有助于理解包气带中的多过程除草剂迁移和向地下水的浸出潜力,其中δ13C可以为微生物降解提供有价值的提示。
{"title":"Fate of herbicides in cropped lysimeters: 2. Leaching of four maize herbicides considering different processes","authors":"Anne Imig, Lea Augustin, J. Groh, T. Pütz, Martin Elsner, F. Einsiedl, A. Rein","doi":"10.1002/vzj2.20275","DOIUrl":"https://doi.org/10.1002/vzj2.20275","url":null,"abstract":"This study investigates the contamination potential of herbicides to groundwater with the help of numerical modeling (HYDRUS‐1D) and stable carbon isotopes for characterizing biodegradation. Four herbicides, metolachlor, terbuthylazine, prosulfuron, and nicosulfuron, were applied over a period of 4.5 years on two lysimeters located in Wielenbach, Germany, and monitored by lysimeter drainage. These lysimeters contained soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2) and were both cropped with maize (Zea mays). In the preceding study, we characterized flow within the lysimeters by using stable water isotopes and unsaturated flow models. Building up on these findings, models were extended for describing reactive transport of the herbicides and investigating process contributions. At the end of the experiment, 0.9%–15.9% of the applied herbicides (up to 20.9% if including metabolites) were recovered by lysimeter drainage. Metabolite formation and accumulation was observed, and biodegradation was also indicated by small changes in carbon isotope signals (δ13C) between applied and leached herbicides. Model setups could describe the dynamics of herbicide concentrations in lysimeter drainage well. Concentration peaks in drainage were partly also linked with strong precipitation events, indicating preferential flow influence. The soil core with the coarser texture (Ly1) showed less herbicide leaching than the finer texture (Ly2), which can be explained by a larger mobile phase in Ly1. Overall, our approaches and findings contribute to the understanding of multi‐process herbicide transport in the vadose zone and leaching potentials to groundwater, where δ13C can provide valuable hints for microbial degradation.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46923202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Combining root and soil hydraulics in macroscopic representations of root water uptake 结合根和土壤水力学在根系吸水的宏观表征
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-31 DOI: 10.1002/vzj2.20273
J. Vanderborght, D. Leitner, A. Schnepf, V. Couvreur, H. Vereecken, M. Javaux
{"title":"Combining root and soil hydraulics in macroscopic representations of root water uptake","authors":"J. Vanderborght, D. Leitner, A. Schnepf, V. Couvreur, H. Vereecken, M. Javaux","doi":"10.1002/vzj2.20273","DOIUrl":"https://doi.org/10.1002/vzj2.20273","url":null,"abstract":"","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49239488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Main water pathways in cultivated clayey calcisols in molassic hills in southwestern France: Toward spatialization of soil waterlogging 法国西南部莫拉西丘陵地区种植的粘性钙化土的主要水通道:土壤内涝的空间化
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-31 DOI: 10.1002/vzj2.20272
B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse
Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.
法国西南部粘性-钙质土壤的陡坡上经常发生局部内涝,导致营养物质和污染物转移到水体,减少生态系统服务。这些土壤发育于中新世莫拉西丘陵地层,通常不透水,具有丰富的水成形体痕迹和不均匀的空间分布。本文旨在通过对土壤、水文和地球物理特征的交叉分析,描述这些土壤的水文功能。我们的实验地点位于Auradé(法国西南部)的集水区。在这里,我们分析了2020年9月至2021年9月研究流域出口的流量以及测压和气候监测。我们发现,水文年分为三个阶段:第一,有效降雨量约为100毫米的土壤补给阶段;第二,饱和阶段,80%的有效降水主要通过径流和皮下流排出;第三,干燥阶段。土壤内涝事件通常发生在饱和阶段。它们是由几种形式的流动引起的:与回流相关的地表径流,由地下水力传导率较低的土层(膨胀粘土和犁底)引起的地下水流,以及山坡土壤地下水位与冲积地下水位间歇性连接的地下水流。我们还进行了独立的地震折射层析成像分析,验证了集水区的局部内涝模式,并为在研究地块的规模上对高内涝潜力区域进行空间化开辟了道路。
{"title":"Main water pathways in cultivated clayey calcisols in molassic hills in southwestern France: Toward spatialization of soil waterlogging","authors":"B. Trochon, V. Bustillo, L. Caner, S. Pasquet, V. Suc, F. Granouillac, A. Probst, J. Probst, T. Tallec, M. Guiresse","doi":"10.1002/vzj2.20272","DOIUrl":"https://doi.org/10.1002/vzj2.20272","url":null,"abstract":"Local waterlogging often occurs on the steep slopes of clayey–calcareous soils in southwestern France, causing nutrients and pollutants transfer to the river bodies and reduced ecosystems services. These soils developed in the Miocene molassic hill formation and are generally impermeable with abundant traces of hydromorphy and heterogenous spatial distribution. This article aims to describe the hydrological functioning of these soils, based on a cross analysis of pedological, hydrological, and geophysical characterizations. Our experimental site is the catchment area located in Auradé (southwestern France). Here, we analyze the flows at the outlet of the studied watershed together with piezometric and climatic monitoring from September 2020 to September 2021. We show that the hydrological year is divided into three phases: first, a soil recharge phase with an effective rainfall of about 100 mm; second, a saturation phase, when 80% of the effective precipitation is drained mostly by runoff and hypodermic flows; third, a drying phase. Soil waterlogging events usually occur during the saturation phase. They are due to several forms of flow: surface runoff associated with return flow, hypodermic flow caused by the presence of soil layers with lower hydraulic conductivity in the subsurface (swelling clays and plowing sole) and groundwater flow with intermittent connection of the soil water table in the hillside to the alluvial groundwater table. We also conducted independent seismic refraction tomography analyses that validate localized waterlogging patterns along the catchment and open the way to spatializing areas with high waterlogging potential at the scale of the study plot.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"22 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant growth‐promoting rhizobacteria mediate soil hydro‐physical properties: An investigation with Bacillus subtilis and its mutants 促进植物生长的根瘤菌介导土壤水物理特性:枯草芽孢杆菌及其突变体的研究
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-31 DOI: 10.1002/vzj2.20274
Fatema Kaniz, Wenjuan Zheng, H. Bais, Yan Jin
Plant growth‐promoting rhizobacteria and other soil bacteria have the potential to improve soil hydro‐physical properties and processes through the production of extracellular polymeric substances (EPS). However, the mechanisms by which EPS mediates changes in soil properties and processes remain incompletely understood, partly due to variations in EPS composition produced under different environmental conditions. In this study, we investigated the influence of different bacterial traits on intrinsic soil properties and processes of evaporation and infiltration using sand treated with the wild‐type Bacillus subtilis variant (UD1022) and its two mutant variants, eps−$eps^{-}$ – tasA−$tasA^{-}$ and srf AC−$AC^{-}$ . The eps−$eps^{-}$ – tasA−$tasA^{-}$ mutant suppresses EPS production through alterations in the eps and tasA genes, while the srf AC−$AC^{-}$ mutant lacks the gene for surfactin production. Experimental results confirmed that the solution viscosity of the eps−$eps^{-}$ – tasA−$tasA^{-}$ mutant was the lowest and the solution surface tension of the srf AC−$AC^{-}$ mutant was the highest among the three tested bacteria strains. The distinct intrinsic properties of EPS produced by these bacterial strains resulted in varied hydro‐physical responses in the treated sand. Key influences included modifications in wettability, hydraulic decoupling (or mixed wettability), and aggregation, which collectively led to reduced evaporation rates and heterogeneous water distribution during infiltration in the bacteria‐treated sands. Our findings advance the understanding of the role bacterial EPS play in vadose zone hydrology and offer insights for the development of sustainable strategies for increasing water retention, supporting crop production in arid regions, and facilitating land restoration.
促进植物生长的根际细菌和其他土壤细菌有可能通过生产细胞外聚合物(EPS)来改善土壤的水物理性质和过程。然而,EPS介导土壤性质和过程变化的机制仍不完全清楚,部分原因是在不同环境条件下产生的EPS组成的变化。在本研究中,我们使用野生型枯草芽孢杆菌变异株(UD1022)及其两个变异株eps−$eps^{-}$–tasA−$tasA^{-}$和srf AC−$AC^{-}$处理的沙子,研究了不同细菌性状对土壤内在性质和蒸发和渗透过程的影响。eps−$eps^{-}$–tasA−$tasA^{-}$突变体通过eps和tasA基因的改变抑制eps的产生,而srf AC−$AC^{-{}$突变体缺乏表面活性素产生的基因。实验结果证实,在三种测试菌株中,eps−$eps^{-}$–tasA−$tasA^{-}$突变体的溶液粘度最低,srf AC−$AC^{-{}$突变体的表面张力最高。这些细菌菌株产生的EPS具有不同的内在特性,导致处理后的沙子产生不同的水物理反应。关键影响包括润湿性、水力去耦(或混合润湿性)和聚集性的改变,这些共同导致细菌处理砂中渗透过程中蒸发率降低和水分布不均匀。我们的发现促进了对细菌EPS在渗流带水文中所起作用的理解,并为制定可持续战略提供了见解,以提高保水性,支持干旱地区的作物生产,促进土地恢复。
{"title":"Plant growth‐promoting rhizobacteria mediate soil hydro‐physical properties: An investigation with Bacillus subtilis and its mutants","authors":"Fatema Kaniz, Wenjuan Zheng, H. Bais, Yan Jin","doi":"10.1002/vzj2.20274","DOIUrl":"https://doi.org/10.1002/vzj2.20274","url":null,"abstract":"Plant growth‐promoting rhizobacteria and other soil bacteria have the potential to improve soil hydro‐physical properties and processes through the production of extracellular polymeric substances (EPS). However, the mechanisms by which EPS mediates changes in soil properties and processes remain incompletely understood, partly due to variations in EPS composition produced under different environmental conditions. In this study, we investigated the influence of different bacterial traits on intrinsic soil properties and processes of evaporation and infiltration using sand treated with the wild‐type Bacillus subtilis variant (UD1022) and its two mutant variants, eps−$eps^{-}$ – tasA−$tasA^{-}$ and srf AC−$AC^{-}$ . The eps−$eps^{-}$ – tasA−$tasA^{-}$ mutant suppresses EPS production through alterations in the eps and tasA genes, while the srf AC−$AC^{-}$ mutant lacks the gene for surfactin production. Experimental results confirmed that the solution viscosity of the eps−$eps^{-}$ – tasA−$tasA^{-}$ mutant was the lowest and the solution surface tension of the srf AC−$AC^{-}$ mutant was the highest among the three tested bacteria strains. The distinct intrinsic properties of EPS produced by these bacterial strains resulted in varied hydro‐physical responses in the treated sand. Key influences included modifications in wettability, hydraulic decoupling (or mixed wettability), and aggregation, which collectively led to reduced evaporation rates and heterogeneous water distribution during infiltration in the bacteria‐treated sands. Our findings advance the understanding of the role bacterial EPS play in vadose zone hydrology and offer insights for the development of sustainable strategies for increasing water retention, supporting crop production in arid regions, and facilitating land restoration.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46009903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fate of herbicides in cropped lysimeters: 1. Influence of different processes and model structure on vadose zone flow 除草剂在作物蒸渗仪中的命运:1。不同过程和模型结构对渗流带流动的影响
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-31 DOI: 10.1002/vzj2.20265
Anne Imig, Lea Augustin, J. Groh, T. Pütz, Tiantian Zhou, F. Einsiedl, A. Rein
Understanding transport and fate processes in the subsurface is of fundamental importance to identify the leaching potentials of herbicides or other compounds to groundwater resources. HYDRUS‐1D was used to simulate water flow and solute transport in arable land lysimeters. Simulations were compared to observed drainage rates and stable water isotopes (δ18O) in the drainage. Four different model setups were investigated and statistically evaluated for their model performance to identify dominant processes for water flow characterization in the vadose zone under similar cultivation management and climatic conditions. The studied lysimeters contain soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2), both cropped with maize located in Wielenbach, Germany. First, a single‐porosity setup was chosen. For Ly1, modeling results were satisfactory, but for Ly2, the damping observed in the isotope signature of the drainage could not be fully covered. By considering immobile water with a dual‐porosity setup for Ly2, model performance improved. This could be due to a higher fraction of fine pores in Ly2 available for water storage, leading to mixing processes of isotopically enriched summer precipitation and lighter winter water. Accounting for isotopic evaporation fractionation processes in both model setups did not lead to improved model performance. Consequentially, the difference in soil hydraulic properties between the two lysimeters seems to impact water flow processes. Knowledge of such differences is crucial to prevent contamination and mitigate potential risks to soil and groundwater.
了解地下的迁移和归宿过程对于确定除草剂或其他化合物对地下水资源的浸出潜力至关重要。HYDRUS‐1D用于模拟耕地蒸渗仪中的水流和溶质运移。模拟结果与观测到的排水速率和排水中的稳定水同位素(δ18O)进行了比较。研究了四种不同的模型设置,并对其模型性能进行了统计评估,以确定在相似的栽培管理和气候条件下渗流带水流特征的主导过程。所研究的蒸渗仪包含以砂砾(Ly1)和粘质砂质粉土(Ly2)为主的岩芯,这两种土都是在德国维伦巴赫种植的玉米。首先,选择单一孔隙度设置。对于Ly1,建模结果是令人满意的,但对于Ly2,在排水的同位素特征中观察到的阻尼不能完全覆盖。通过为Ly2考虑具有双重孔隙设置的固定水,模型性能得到了改善。这可能是由于Ly2中可用于蓄水的细孔比例较高,导致同位素富集的夏季降水和较轻的冬季水的混合过程。在两个模型设置中考虑同位素蒸发分馏过程并没有提高模型性能。因此,两个蒸渗计之间土壤水力特性的差异似乎会影响水流过程。了解这些差异对于防止污染和减轻土壤和地下水的潜在风险至关重要。
{"title":"Fate of herbicides in cropped lysimeters: 1. Influence of different processes and model structure on vadose zone flow","authors":"Anne Imig, Lea Augustin, J. Groh, T. Pütz, Tiantian Zhou, F. Einsiedl, A. Rein","doi":"10.1002/vzj2.20265","DOIUrl":"https://doi.org/10.1002/vzj2.20265","url":null,"abstract":"Understanding transport and fate processes in the subsurface is of fundamental importance to identify the leaching potentials of herbicides or other compounds to groundwater resources. HYDRUS‐1D was used to simulate water flow and solute transport in arable land lysimeters. Simulations were compared to observed drainage rates and stable water isotopes (δ18O) in the drainage. Four different model setups were investigated and statistically evaluated for their model performance to identify dominant processes for water flow characterization in the vadose zone under similar cultivation management and climatic conditions. The studied lysimeters contain soil cores dominated by sandy gravel (Ly1) and clayey sandy silt (Ly2), both cropped with maize located in Wielenbach, Germany. First, a single‐porosity setup was chosen. For Ly1, modeling results were satisfactory, but for Ly2, the damping observed in the isotope signature of the drainage could not be fully covered. By considering immobile water with a dual‐porosity setup for Ly2, model performance improved. This could be due to a higher fraction of fine pores in Ly2 available for water storage, leading to mixing processes of isotopically enriched summer precipitation and lighter winter water. Accounting for isotopic evaporation fractionation processes in both model setups did not lead to improved model performance. Consequentially, the difference in soil hydraulic properties between the two lysimeters seems to impact water flow processes. Knowledge of such differences is crucial to prevent contamination and mitigate potential risks to soil and groundwater.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43289625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Improved calculation of soil hydraulic conductivity with the simplified evaporation method 改进了简化蒸发法计算土壤导流系数的方法
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-25 DOI: 10.1002/vzj2.20267
Leonardo Inforsato, S. Iden, W. Durner, A. Peters, Q. de Jong van Lier
Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.
土壤水分动力学和储存的数值模拟通常基于理查兹方程。它的解决需要了解土壤水力特性(SHP):土壤保水功能和水力传导功能。为了确定SHP,实验室蒸发实验特别受欢迎,因为它们提供了SHP功能的数据。简化蒸发法(SEM)的评估方法最初由Schindler提出,随后经过几位作者的改进,它依赖于线性化假设,允许相对简单的计算方案,但导致某些土壤的电导率数据有偏差。本研究的目的是提出并测试一种改进的水力传导函数计算方案。我们提出了新的理论,并表明它通常导致更高的精度的电导率函数。对于沙质土壤和−100 cm以下的土壤水压头,改进最为明显,而原始方法提供的数据存在偏差。
{"title":"Improved calculation of soil hydraulic conductivity with the simplified evaporation method","authors":"Leonardo Inforsato, S. Iden, W. Durner, A. Peters, Q. de Jong van Lier","doi":"10.1002/vzj2.20267","DOIUrl":"https://doi.org/10.1002/vzj2.20267","url":null,"abstract":"Numerical modeling of soil water dynamics and storage is generally based on the Richards equation. Its solution requires knowledge of the soil hydraulic properties (SHP): the soil water retention function and the hydraulic conductivity function. To determine SHP, laboratory evaporation experiments are particularly popular because they provide data for both SHP functions. The evaluation by the simplified evaporation method (SEM) method, originally proposed by Schindler and subsequently improved by several authors, relies on linearization assumptions that allow for a relatively simple calculation scheme but result in biased conductivity data for some soils. The objective of this study is to propose and test an improved computational scheme for the hydraulic conductivity function. We present the new theory and show that it leads generally to higher accuracy of the conductivity function. The improvement is most pronounced for sandy soils and soil water pressure heads below −100 cm, where the original method provided data with bias.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44087763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties 回顾和分析泥炭和其他有机土壤的收缩与所选土壤性质的关系
IF 2.8 3区 地球科学 Q3 ENVIRONMENTAL SCIENCES Pub Date : 2023-07-20 DOI: 10.1002/vzj2.20264
Ronny Seidel, U. Dettmann, B. Tiemeyer
Peat and other organic soils (e.g., organo‐mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume‐based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta‐analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three‐dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.
泥炭和其他有机土壤(如有机矿物土壤)通过干燥和湿润表现出独特的体积变化。体积变化背后的重要过程是收缩和膨胀。关于收缩的研究有着悠久的历史,这些研究是在不同的土壤描述、命名和参数、测量方法和术语方案下进行的。到目前为止,这些研究还没有统一起来,以比较或预测不同土壤性质的收缩,例如堆积密度或基质成分。然而,为了预测微生物分解或泥炭形成引起的二氧化碳排放或吸收,有必要防止在确定基于体积的土壤特性或解释泥炭地海拔测量时出现偏差。本研究全面概述了过去100年中进行的收缩研究。术语和方法被系统地分类。在第一部分中,总结了收缩特性的概念、测量方法和模型方法。第二部分是泥炭和其他有机土壤收缩研究的荟萃分析,通过三维结构光扫描仪获得的测量数据进行了修正。结果表明,最大收缩率在11%至93%之间,受常见土壤性质(植物成分、分解程度、土壤有机碳和堆积密度)的强烈影响。体积密度比土壤有机碳具有更强的相关性,是更好的预测因子,但最大收缩率在所有类型的泥炭和其他有机土壤以及体积密度和土壤有机碳的范围内都有很大的分布。
{"title":"Reviewing and analyzing shrinkage of peat and other organic soils in relation to selected soil properties","authors":"Ronny Seidel, U. Dettmann, B. Tiemeyer","doi":"10.1002/vzj2.20264","DOIUrl":"https://doi.org/10.1002/vzj2.20264","url":null,"abstract":"Peat and other organic soils (e.g., organo‐mineral soils) show distinctive volume changes through desiccation and wetting. Important processes behind volume changes are shrinkage and swelling. There is a long history of studies on shrinkage which were conducted under different schemes for soil descriptions, nomenclatures and parameters, measurement approaches, and terminologies. To date, these studies have not been harmonized in order to compare or predict shrinkage from different soil properties, for example, bulk density or substrate composition. This, however, is necessary to prevent biases in the determination of volume‐based soil properties or for the interpretation of elevation measurements in peatlands, in order to predict carbon dioxide emissions or uptake caused by microbial decomposition or peat formation. This study gives a comprehensive overview of shrinkage studies carried out in the last 100 years. Terminology and approaches are systematically classified. In part I, the concepts for shrinkage characteristics, measurement methods, and model approaches are summarized. Part II is a meta‐analysis of shrinkage studies on peat and other organic soils amended by own measurement data obtained by a three‐dimensional structured light scanner. The results show that maximum shrinkage has a wide range from 11% to 93% and is strongly affected by common soil properties (botanical composition, degree of decomposition, soil organic carbon, and bulk density). Showing a stronger correlation, bulk density was a better predictor than soil organic carbon, but maximum shrinkage showed a large spread over all types of peat and other organic soils and ranges of bulk density and soil organic carbon.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49599265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Vadose Zone Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1