Effects of Rotational Speed on the Mechanical Properties and Performance of AA6061-T6 Aluminium Alloy in Similar Rotary Friction Welding

Q4 Materials Science Welding International Pub Date : 2023-09-02 DOI:10.1080/09507116.2023.2265811
Agus Sasmito, Mochammad Noer Ilman, Priyo Tri Iswanto
{"title":"Effects of Rotational Speed on the Mechanical Properties and Performance of AA6061-T6 Aluminium Alloy in Similar Rotary Friction Welding","authors":"Agus Sasmito, Mochammad Noer Ilman, Priyo Tri Iswanto","doi":"10.1080/09507116.2023.2265811","DOIUrl":null,"url":null,"abstract":"AbstractSimilar rotary friction welding with AA6061-T6 rod material was carried out at four variations of rotational speed in order to study the effect of rotational speed on the joint properties. The increasing of rotational speed produce higher hardness value in DRZ area. i.e., the lowest microhardness value in the DRZ area was 129 VHN at 380 rpm and increased to 192 VHN at 1700 rpm due to a grain refinement process that increased the hardness as the Hall-Petch equation. Otherwise, in the HAZ and TMAZ area, the microhardness profile has a decreasing trend due to the welding rotation increases. All welded joints have a lower strength than the base metal about 68% for tensile and 83% for fatigue. The observations on the fracture surface of tensile and fatigue test showed that the fracture's area occurs in the same region where the lowest microhardness and roughness grain size occur.Keywords: Aluminium AA6061rotary friction weldingthermal cyclefatigue strengthDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.","PeriodicalId":23605,"journal":{"name":"Welding International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09507116.2023.2265811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractSimilar rotary friction welding with AA6061-T6 rod material was carried out at four variations of rotational speed in order to study the effect of rotational speed on the joint properties. The increasing of rotational speed produce higher hardness value in DRZ area. i.e., the lowest microhardness value in the DRZ area was 129 VHN at 380 rpm and increased to 192 VHN at 1700 rpm due to a grain refinement process that increased the hardness as the Hall-Petch equation. Otherwise, in the HAZ and TMAZ area, the microhardness profile has a decreasing trend due to the welding rotation increases. All welded joints have a lower strength than the base metal about 68% for tensile and 83% for fatigue. The observations on the fracture surface of tensile and fatigue test showed that the fracture's area occurs in the same region where the lowest microhardness and roughness grain size occur.Keywords: Aluminium AA6061rotary friction weldingthermal cyclefatigue strengthDisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转速对AA6061-T6铝合金类似旋转摩擦焊接力学性能的影响
摘要为研究转速对接头性能的影响,对AA6061-T6棒材在4种不同转速下进行了类似旋转摩擦焊接。转速的增加使DRZ区的硬度值增大。如Hall-Petch方程所示,由于晶粒细化过程提高了硬度,DRZ区域的显微硬度值在380 rpm时最低为129 VHN,在1700 rpm时增加到192 VHN。相反,在HAZ和TMAZ区域,由于焊接旋转的增加,显微硬度曲线呈下降趋势。所有焊接接头的强度都低于母材,拉伸强度约为68%,疲劳强度约为83%。拉伸和疲劳试验断口表面观察表明,断口区域出现在显微硬度和粗糙度最小的同一区域。关键词:aa6061铝旋转摩擦焊热循环疲劳强度免责声明作为对作者和研究人员的服务,我们提供这个版本的接受稿件(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Welding International
Welding International Materials Science-Metals and Alloys
CiteScore
0.70
自引率
0.00%
发文量
57
期刊介绍: Welding International provides comprehensive English translations of complete articles, selected from major international welding journals, including: Journal of Japan Welding Society - Japan Journal of Light Metal Welding and Construction - Japan Przeglad Spawalnictwa - Poland Quarterly Journal of Japan Welding Society - Japan Revista de Metalurgia - Spain Rivista Italiana della Saldatura - Italy Soldagem & Inspeção - Brazil Svarochnoe Proizvodstvo - Russia Welding International is a well-established and widely respected journal and the translators are carefully chosen with each issue containing a balanced selection of between 15 and 20 articles. The articles cover research techniques, equipment and process developments, applications and material and are not available elsewhere in English. This journal provides a valuable and unique service for those needing to keep up-to-date on the latest developments in welding technology in non-English speaking countries.
期刊最新文献
Characteristics analysis and monitoring of friction stir welded dissimilar AA5083/AA6061-T6 using acoustic emission technique Edge detection in x-ray images of drill mast welds based on an improved Scharr operator Experimentally validated numerical prediction of laser welding induced distortions of Al alloy parts for railcar body by inherent strain method combined with thermo-elastic-plastic FE model Understanding of thermal behaviour in keyhole plasma arc welding process through numerical modelling–an overview Effect of post-weld heat treatment on mechanical and microstructural properties of high strength steel weld metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1