Junqiang Zhang, Souma Chowdhury, Jie Zhang, Weiyang Tong, Achille Messac
{"title":"Optimal selection of time windows for preventive maintenance of offshore wind farms subject to wake losses","authors":"Junqiang Zhang, Souma Chowdhury, Jie Zhang, Weiyang Tong, Achille Messac","doi":"10.1002/we.2815","DOIUrl":null,"url":null,"abstract":"The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed‐integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility‐scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":"145 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/we.2815","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The maintenance of wind farms is one of the major factors affecting their profitability. During preventive maintenance, the shutdown of wind turbines causes downtime energy losses. The selection of when and which turbines to maintain can significantly impact the overall downtime energy loss. This paper leverages a wind farm power generation model to calculate downtime energy losses during preventive maintenance for an offshore wind farm. Wake effects are considered to accurately evaluate power output under specific wind conditions. In addition to wind speed and direction, the influence of wake effects is an important factor in selecting time windows for maintenance. To minimize the overall downtime energy loss of an offshore wind farm caused by preventive maintenance, a mixed‐integer nonlinear optimization problem is formulated and solved by the genetic algorithm, which can select the optimal maintenance time windows of each turbine. Weather conditions are imposed as constraints to ensure the safety of maintenance personnel and transportation. Using the climatic data of Cape Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simulated utility‐scale offshore wind farm. The optimized schedule not only reduces the annual downtime energy loss by selecting the maintenance dates when wind speed is low but also decreases the overall influence of wake effects within the farm. The portion of downtime energy loss reduced due to consideration of wake effects each year is up to approximately 0.2% of the annual wind farm energy generation across the case studies—with other stated opportunities for further profitability improvements.
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.