Simulating the Sensitivity to Stellar Point Sources of Chandra X-Ray Observations

IF 8.6 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astrophysical Journal Supplement Series Pub Date : 2023-10-25 DOI:10.3847/1538-4365/acdd63
Nicholas J. Wright, Jeremy J. Drake, Mario G. Guarcello, Vinay L. Kashyap, Andreas Zezas
{"title":"Simulating the Sensitivity to Stellar Point Sources of Chandra X-Ray Observations","authors":"Nicholas J. Wright, Jeremy J. Drake, Mario G. Guarcello, Vinay L. Kashyap, Andreas Zezas","doi":"10.3847/1538-4365/acdd63","DOIUrl":null,"url":null,"abstract":"Abstract The Chandra Cygnus OB2 Legacy Survey is a wide and deep X-ray survey of the nearby and massive Cygnus OB2 association. The survey has detected ∼8000 X-ray sources, the majority of which are pre-main-sequence X-ray-emitting young stars in the association itself. To facilitate quantitative scientific studies of these sources, as well as the underlying OB association, it is important to understand the sensitivity of the observations and the level of completeness the observations have obtained. Here we describe the use of a hierarchical Monte Carlo simulation to achieve this goal by combining the empirical properties of the observations, analytic estimates of the source verification process, and an extensive set of source detection simulations. We find that our survey reaches a 90% completeness level for a pre-main-sequence population at the distance of Cyg OB2 at an X-ray luminosity of 4 × 10 30 erg s −1 and a stellar mass of 1.3 M ⊙ for a randomly distributed population. For a spatially clustered population such as Cyg OB2 the 90% completeness level is reached at 1.1 M ⊙ instead, as the sources are more concentrated in areas of our survey with a high exposure. These simulations can easily be adapted for use with other X-ray observations and surveys, and we provide X-ray detection efficiency curves for a very wide array of source and background properties to allow these simulations to be easily exploited by other users.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"9 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/acdd63","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract The Chandra Cygnus OB2 Legacy Survey is a wide and deep X-ray survey of the nearby and massive Cygnus OB2 association. The survey has detected ∼8000 X-ray sources, the majority of which are pre-main-sequence X-ray-emitting young stars in the association itself. To facilitate quantitative scientific studies of these sources, as well as the underlying OB association, it is important to understand the sensitivity of the observations and the level of completeness the observations have obtained. Here we describe the use of a hierarchical Monte Carlo simulation to achieve this goal by combining the empirical properties of the observations, analytic estimates of the source verification process, and an extensive set of source detection simulations. We find that our survey reaches a 90% completeness level for a pre-main-sequence population at the distance of Cyg OB2 at an X-ray luminosity of 4 × 10 30 erg s −1 and a stellar mass of 1.3 M ⊙ for a randomly distributed population. For a spatially clustered population such as Cyg OB2 the 90% completeness level is reached at 1.1 M ⊙ instead, as the sources are more concentrated in areas of our survey with a high exposure. These simulations can easily be adapted for use with other X-ray observations and surveys, and we provide X-ray detection efficiency curves for a very wide array of source and background properties to allow these simulations to be easily exploited by other users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟钱德拉x射线观测对恒星点源的灵敏度
钱德拉天鹅座OB2遗产巡天是对邻近的大质量天鹅座OB2星系进行的广泛而深入的x射线巡天。该调查已经探测到约8000个x射线源,其中大多数是主序前x射线发射的年轻恒星。为了便于对这些来源以及潜在OB关联进行定量科学研究,了解观测结果的敏感性和观测结果的完整性水平是很重要的。在这里,我们描述了分层蒙特卡罗模拟的使用,通过结合观测的经验特性、源验证过程的分析估计和一组广泛的源检测模拟来实现这一目标。我们发现,在天鹅座OB2的距离上,在x射线亮度为4 × 10 30 erg s−1,随机分布的恒星质量为1.3 M⊙的前主序星群,我们的调查达到了90%的完整性水平。对于空间聚集的种群,如Cyg OB2, 90%的完整性水平达到1.1 M⊙,因为源更集中在我们调查的高暴露区域。这些模拟可以很容易地适用于其他x射线观测和调查,我们为非常广泛的源和背景属性提供x射线探测效率曲线,使这些模拟可以很容易地被其他用户利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrophysical Journal Supplement Series
Astrophysical Journal Supplement Series 地学天文-天文与天体物理
CiteScore
14.50
自引率
5.70%
发文量
264
审稿时长
2 months
期刊介绍: The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.
期刊最新文献
The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory Toward Machine-learning-based Metastudies: Applications to Cosmological Parameters JWST Census for the Mass–Metallicity Star Formation Relations at z = 4–10 with Self-consistent Flux Calibration and Proper Metallicity Calibrators Photoionization from the Ground and Excited Vibrational States of H2+ and Its Deuterated Isotopologues The Farmer: A Reproducible Profile-fitting Photometry Package for Deep Galaxy Surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1