Pub Date : 2023-11-14DOI: 10.3847/1538-4365/ad0154
Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray
Abstract Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M ⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of f() gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the ρ=θ00 and pr=θ11 sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M ⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814.
{"title":"The Effect of Gravitational Decoupling on Constraining the Mass and Radius for the Secondary Component of GW190814 and Other Self-bound Strange Stars in f(Q) Gravity Theory","authors":"Sunil Kumar Maurya, Ksh. Newton Singh, Megandhren Govender, Ghulam Mustafa, Saibal Ray","doi":"10.3847/1538-4365/ad0154","DOIUrl":"https://doi.org/10.3847/1538-4365/ad0154","url":null,"abstract":"Abstract Inspired by the conundrum of the gravitational event GW190814, which brings to light the coalescence of a 23 M ⊙ black hole with a yet-to-be-determined secondary component, we look to modeling compact objects within the framework of <?CDATA $f({ mathcal Q })$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi mathvariant=\"italic\"></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:math> gravity by employing the method of gravitational decoupling. We impose a quadratic equation of state (EOS) for the interior matter distribution, which in the appropriate limit reduces to the MIT bag model. The governing field equations arising from gravitational decoupling bifurcate into the <?CDATA $rho ={theta }_{0}^{0}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>ρ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> and <?CDATA ${p}_{r}={theta }_{1}^{1}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mrow> <mml:mi>p</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mi>θ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> sectors, leading to two distinct classes of solutions. Both families of solutions are subjected to rigorous tests, qualifying them to describe a plethora of compact objects, including neutron stars, strange stars, and the possible progenitor of the secondary component of GW190814. Using observational data of mass–radius relations for compact objects LMC X-4, Cen X-3, PSR J1614–2230, and PSR J0740+6620, we show that it is possible to generate stellar masses and radii beyond 2.0 M ⊙ for neutron stars. Our findings reveal that the most suitable and versatile model in this framework is the quadratic EOS, which accounts for a range of low-mass stars and typical stellar candidates describing the secondary component of GW190814.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"85 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present the evolution of the mass–metallicity (MZ) relation at z = 4–10 derived with 135 galaxies identified in JWST/NIRSpec data taken from the three major public spectroscopy programs of ERO, GLASS, and CEERS. Because there are many discrepancies between the flux measurements reported by the early ERO studies, we first establish our NIRSpec data reduction procedure for reliable emission-line flux measurements and errors, successfully explaining Balmer decrements with no statistical tensions thorough comparisons with the early ERO studies. Applying the reduction procedure to the 135 galaxies, we obtain emission-line fluxes for physical property measurements. We confirm that 10 out of the 135 galaxies with [O iii ] λ 4363 lines have electron temperatures of ≃(1.1–2.3) × 10 4 K, similar to lower- z star-forming galaxies, which can be explained by heating by young massive stars. We derive the metallicities of the 10 galaxies by a direct method and the rest of the galaxies with strong lines using the metallicity calibrations of Nakajima et al. applicable for these low-mass metal-poor galaxies, anchoring the metallicities with the direct-method measurements. We thus obtain the MZ relation and star formation rate (SFR)–MZ relation over z = 4–10. We find that there is a small evolution of the MZ relation from z ∼ 2–3 to z = 4–10, while interestingly the SFR–MZ relation shows no evolution up to z ∼ 8 but a significant decrease at z > 8 beyond the errors This SFR–MZ relation decrease at z > 8 may suggest a break of the metallicity equilibrium state via star formation, inflow, and outflow, while further statistical and local-baseline studies are needed for a conclusion.
{"title":"JWST Census for the Mass–Metallicity Star Formation Relations at z = 4–10 with Self-consistent Flux Calibration and Proper Metallicity Calibrators","authors":"Kimihiko Nakajima, Masami Ouchi, Yuki Isobe, Yuichi Harikane, Yechi Zhang, Yoshiaki Ono, Hiroya Umeda, Masamune Oguri","doi":"10.3847/1538-4365/acd556","DOIUrl":"https://doi.org/10.3847/1538-4365/acd556","url":null,"abstract":"Abstract We present the evolution of the mass–metallicity (MZ) relation at z = 4–10 derived with 135 galaxies identified in JWST/NIRSpec data taken from the three major public spectroscopy programs of ERO, GLASS, and CEERS. Because there are many discrepancies between the flux measurements reported by the early ERO studies, we first establish our NIRSpec data reduction procedure for reliable emission-line flux measurements and errors, successfully explaining Balmer decrements with no statistical tensions thorough comparisons with the early ERO studies. Applying the reduction procedure to the 135 galaxies, we obtain emission-line fluxes for physical property measurements. We confirm that 10 out of the 135 galaxies with [O iii ] λ 4363 lines have electron temperatures of ≃(1.1–2.3) × 10 4 K, similar to lower- z star-forming galaxies, which can be explained by heating by young massive stars. We derive the metallicities of the 10 galaxies by a direct method and the rest of the galaxies with strong lines using the metallicity calibrations of Nakajima et al. applicable for these low-mass metal-poor galaxies, anchoring the metallicities with the direct-method measurements. We thus obtain the MZ relation and star formation rate (SFR)–MZ relation over z = 4–10. We find that there is a small evolution of the MZ relation from z ∼ 2–3 to z = 4–10, while interestingly the SFR–MZ relation shows no evolution up to z ∼ 8 but a significant decrease at z > 8 beyond the errors This SFR–MZ relation decrease at z > 8 may suggest a break of the metallicity equilibrium state via star formation, inflow, and outflow, while further statistical and local-baseline studies are needed for a conclusion.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"37 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136347933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-13DOI: 10.3847/1538-4365/acf76a
Tom Crossland, Pontus Stenetorp, Daisuke Kawata, Sebastian Riedel, Thomas D. Kitching, Anurag Deshpande, Tom Kimpson, Choong Ling Liew-Cain, Christian Pedersen, Davide Piras, Monu Sharma
Abstract We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilizing modern natural language processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface ( Numerical Atlas ) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting data sets for their own research uses. To illustrate potential use cases, we then collect values for nine different cosmological parameters using this tool. From these results, we can clearly observe the historical trends in the reported values of these quantities over the past two decades and see the impacts of landmark publications on our understanding of cosmology.
{"title":"Toward Machine-learning-based Metastudies: Applications to Cosmological Parameters","authors":"Tom Crossland, Pontus Stenetorp, Daisuke Kawata, Sebastian Riedel, Thomas D. Kitching, Anurag Deshpande, Tom Kimpson, Choong Ling Liew-Cain, Christian Pedersen, Davide Piras, Monu Sharma","doi":"10.3847/1538-4365/acf76a","DOIUrl":"https://doi.org/10.3847/1538-4365/acf76a","url":null,"abstract":"Abstract We develop a new model for automatic extraction of reported measurement values from the astrophysical literature, utilizing modern natural language processing techniques. We use this model to extract measurements present in the abstracts of the approximately 248,000 astrophysics articles from the arXiv repository, yielding a database containing over 231,000 astrophysical numerical measurements. Furthermore, we present an online interface ( Numerical Atlas ) to allow users to query and explore this database, based on parameter names and symbolic representations, and download the resulting data sets for their own research uses. To illustrate potential use cases, we then collect values for nine different cosmological parameters using this tool. From these results, we can clearly observe the historical trends in the reported values of these quantities over the past two decades and see the impacts of landmark publications on our understanding of cosmology.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"50 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/acfd99
R. Barzaga, D. A. García-Hernández, S. Díaz-Tendero, SeyedAbdolreza Sadjadi, A. Manchado, M. Alcami, M. A. Gómez-Muñoz, T. Huertas-Roldán
Abstract Small metal-containing molecules have been detected and recognized as one of the hybrid species that are efficiently formed in space, especially in the circumstellar envelopes of evolved stars. It has also been predicted that more complex hybrid species such as those formed by metals and fullerenes (metallofullerenes) could be present in these circumstellar environments. Recently, quantum-chemical simulations of metallofullerenes have shown that they are potential emitters contributing to the observed mid-IR spectra in the fullerene-rich circumstellar environments of different types of evolved stars. Here we present the individual simulated mid-IR (∼5–50 μ m) spectra of 28 metallofullerene species. Both neutral and charged endo- and exohedral metallofullerenes for seven different metals (Li, Na, K, Ca, Mg, Ti, and Fe) have been considered. The changes induced by the metal–C 60 interaction in the intensity and position of the spectral features are highlighted using charge-density difference maps and electron-density partitioning. Our calculations identify the fundamental IR spectral regions in which, depending on the metal binding nature, there should be a major spectral contribution from each of the metallofullerenes. The IR spectra of the metallofullerenes are made publicly available to the astronomical community, especially users of the James Webb Space Telescope, for comparisons that could eventually lead to the detection of these species in space.
含金属小分子是一种在空间中,特别是在演化恒星的星周包层中有效形成的杂合分子。也有人预测,在这些星周环境中可能存在更复杂的杂化物种,如由金属和富勒烯(金属富勒烯)形成的杂化物种。最近,金属富勒烯的量子化学模拟表明,它们是在不同类型的演化恒星的富富勒烯星周环境中观测到的中红外光谱的潜在发射体。在这里,我们给出了28种金属富勒烯的单个模拟中红外(~ 5-50 μ m)光谱。本文考虑了七种不同金属(Li, Na, K, Ca, Mg, Ti和Fe)的中性和带电的内、外面体金属富勒烯。利用电荷密度差图和电子密度分划,揭示了金属- c60相互作用引起的光谱特征的强度和位置变化。我们的计算确定了基本的红外光谱区域,根据金属结合的性质,每个金属富勒烯应该有一个主要的光谱贡献。金属富勒烯的红外光谱公开提供给天文学界,特别是詹姆斯·韦伯太空望远镜的用户,以进行比较,最终可能导致在太空中发现这些物种。
{"title":"Infrared Spectral Fingerprint of Neutral and Charged Endo- and Exohedral Metallofullerenes","authors":"R. Barzaga, D. A. García-Hernández, S. Díaz-Tendero, SeyedAbdolreza Sadjadi, A. Manchado, M. Alcami, M. A. Gómez-Muñoz, T. Huertas-Roldán","doi":"10.3847/1538-4365/acfd99","DOIUrl":"https://doi.org/10.3847/1538-4365/acfd99","url":null,"abstract":"Abstract Small metal-containing molecules have been detected and recognized as one of the hybrid species that are efficiently formed in space, especially in the circumstellar envelopes of evolved stars. It has also been predicted that more complex hybrid species such as those formed by metals and fullerenes (metallofullerenes) could be present in these circumstellar environments. Recently, quantum-chemical simulations of metallofullerenes have shown that they are potential emitters contributing to the observed mid-IR spectra in the fullerene-rich circumstellar environments of different types of evolved stars. Here we present the individual simulated mid-IR (∼5–50 μ m) spectra of 28 metallofullerene species. Both neutral and charged endo- and exohedral metallofullerenes for seven different metals (Li, Na, K, Ca, Mg, Ti, and Fe) have been considered. The changes induced by the metal–C 60 interaction in the intensity and position of the spectral features are highlighted using charge-density difference maps and electron-density partitioning. Our calculations identify the fundamental IR spectral regions in which, depending on the metal binding nature, there should be a major spectral contribution from each of the metallofullerenes. The IR spectra of the metallofullerenes are made publicly available to the astronomical community, especially users of the James Webb Space Telescope, for comparisons that could eventually lead to the detection of these species in space.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135456363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/acf57d
Christopher N. A. Willmer, Chun Ly, Satoshi Kikuta, S. A. Kattner, Rolf A. Jansen, Seth H. Cohen, Rogier A. Windhorst, Ian Smail, Scott Tompkins, John F. Beacom, Cheng Cheng, Christopher J. Conselice, Brenda L. Frye, Anton M. Koekemoer, Nimish Hathi, Minhee Hyun, Myungshin Im, S. P. Willner, X. Zhao, Walter A. Brisken, F. Civano, William Cotton, Günther Hasinger, W. Peter Maksym, Marcia J. Rieke, Norman A. Grogin
Abstract We present near-infrared (NIR) ground-based Y , J , H , and K imaging obtained in the James Webb Space Telescope (JWST) North Ecliptic Pole Time Domain Field (NEP TDF) using the MMT-Magellan Infrared Imager and Spectrometer on the MMT. These new observations cover a field of approximately 230 arcmin 2 in Y , H , and K, and 313 arcmin 2 in J . Using Monte Carlo simulations, we estimate a 1 σ depth relative to the background sky of ( Y, J, H, K ) = (23.80, 23.53, 23.13, 23.28) in AB magnitudes for point sources at a 95% completeness level. These observations are part of the ground-based effort to characterize this region of the sky, supplementing space-based data obtained with Chandra, NuSTAR, XMM, AstroSat, Hubble Space Telescope, and JWST. This paper describes the observations and reduction of the NIR imaging and combines these NIR data with archival imaging in the visible, obtained with the Subaru Hyper-Suprime-Cam, to produce a merged catalog of 57,501 sources. The new observations reported here, plus the corresponding multiwavelength catalog, will provide a baseline for time-domain studies of bright sources in the NEP TDF.
{"title":"PEARLS: Near-infrared Photometry in the JWST North Ecliptic Pole Time Domain Field*","authors":"Christopher N. A. Willmer, Chun Ly, Satoshi Kikuta, S. A. Kattner, Rolf A. Jansen, Seth H. Cohen, Rogier A. Windhorst, Ian Smail, Scott Tompkins, John F. Beacom, Cheng Cheng, Christopher J. Conselice, Brenda L. Frye, Anton M. Koekemoer, Nimish Hathi, Minhee Hyun, Myungshin Im, S. P. Willner, X. Zhao, Walter A. Brisken, F. Civano, William Cotton, Günther Hasinger, W. Peter Maksym, Marcia J. Rieke, Norman A. Grogin","doi":"10.3847/1538-4365/acf57d","DOIUrl":"https://doi.org/10.3847/1538-4365/acf57d","url":null,"abstract":"Abstract We present near-infrared (NIR) ground-based Y , J , H , and K imaging obtained in the James Webb Space Telescope (JWST) North Ecliptic Pole Time Domain Field (NEP TDF) using the MMT-Magellan Infrared Imager and Spectrometer on the MMT. These new observations cover a field of approximately 230 arcmin 2 in Y , H , and K, and 313 arcmin 2 in J . Using Monte Carlo simulations, we estimate a 1 σ depth relative to the background sky of ( Y, J, H, K ) = (23.80, 23.53, 23.13, 23.28) in AB magnitudes for point sources at a 95% completeness level. These observations are part of the ground-based effort to characterize this region of the sky, supplementing space-based data obtained with Chandra, NuSTAR, XMM, AstroSat, Hubble Space Telescope, and JWST. This paper describes the observations and reduction of the NIR imaging and combines these NIR data with archival imaging in the visible, obtained with the Subaru Hyper-Suprime-Cam, to produce a merged catalog of 57,501 sources. The new observations reported here, plus the corresponding multiwavelength catalog, will provide a baseline for time-domain studies of bright sources in the NEP TDF.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"107 3-4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135271649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We report the first results of a high-redshift ( z ≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 < z < 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data and J -band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤ z < 6.6, down to 21.5 magnitude (AB) in the z band, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified at z ≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% at z > 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Ly α absorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars at z ∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper.
{"title":"DESI z ≳ 5 Quasar Survey. I. A First Sample of 400 New Quasars at z ∼ 4.7–6.6","authors":"Yang, Jinyi, Fan, Xiaohui, Gupta, Ansh, Myers, Adam, Palanque-Delabrouille, Nathalie, Wang, Feige, Yèche, Christophe, Aguilar, Jessica Nicole, Ahlen, Steven, Alexander, David, Brooks, David, Dawson, Kyle, de la Macorra, Axel, Dey, Arjun, Dhungana, Govinda, Fanning, Kevin, Font-Ribera, Andreu, Gontcho, Satya, Guy, Julien, Honscheid, Klaus, Juneau, Stephanie, Kisner, Theodore, Kremin, Anthony, Guillou, Laurent Le, Levi, Michael, Magneville, Christophe, Martini, Paul, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Nie, Jundan, Percival, Will, Poppett, Claire, Prada, Francisco, Schlafly, Edward, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, Wechsler, Risa, Zhou, Rongpu, Zhou, Zhimin, Zou, Hu","doi":"10.3847/1538-4365/acf99b","DOIUrl":"https://doi.org/10.3847/1538-4365/acf99b","url":null,"abstract":"Abstract We report the first results of a high-redshift ( z ≳ 5) quasar survey using the Dark Energy Spectroscopic Instrument (DESI). As a DESI secondary target program, this survey is designed to carry out a systematic search and investigation of quasars at 4.8 < z < 6.8. The target selection is based on the DESI Legacy Imaging Surveys (the Legacy Surveys) DR9 photometry, combined with the Pan-STARRS1 data and J -band photometry from public surveys. A first quasar sample has been constructed from the DESI Survey Validation 3 (SV3) and first-year observations until 2022 May. This sample includes more than 400 new quasars at redshift 4.7 ≤ z < 6.6, down to 21.5 magnitude (AB) in the z band, discovered from 35% of the entire target sample. Remarkably, there are 220 new quasars identified at z ≥ 5, more than one-third of existing quasars previously published at this redshift. The observations so far result in an average success rate of 23% at z > 4.7. The current spectral data set has already allowed analysis of interesting individual objects (e.g., quasars with damped Ly α absorbers and broad absorption line features), and statistical analysis will follow the survey’s completion. A set of science projects will be carried out leveraging this program, including quasar luminosity function, quasar clustering, intergalactic medium, quasar spectral properties, intervening absorbers, and properties of early supermassive black holes. Additionally, a sample of 38 new quasars at z ∼ 3.8–5.7 discovered from a pilot survey in the DESI SV1 is also published in this paper.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"89 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/ac9f1a
Billy Edwards, Quentin Changeat, Angelos Tsiaras, Kai Hou Yip, Ahmed F. Al-Refaie, Lara Anisman, Michelle F. Bieger, Amélie Gressier, Sho Shibata, Nour Skaf, Jeroen Bouwman, James Y-K. Cho, Masahiro Ikoma, Olivia Venot, Ingo Waldmann, Pierre-Olivier Lagage, Giovanna Tinetti
Abstract We present analysis of the atmospheres of 70 gaseous extrasolar planets via transit spectroscopy with Hubble’s Wide Field Camera 3 (WFC3). For over half of these, we statistically detect spectral modulation that our retrievals attribute to molecular species. Among these, we use Bayesian hierarchical modeling to search for chemical trends with bulk parameters. We use the extracted water abundance to infer the atmospheric metallicity and compare it to the planet’s mass. We also run chemical equilibrium retrievals, fitting for the atmospheric metallicity directly. However, although previous studies have found evidence of a mass–metallicity trend, we find no such relation within our data. For the hotter planets within our sample, we find evidence for thermal dissociation of dihydrogen and water via the H − opacity. We suggest that the general lack of trends seen across this population study could be due to (i) the insufficient spectral coverage offered by the Hubble Space Telescope’s WFC3 G141 band, (ii) the lack of a simple trend across the whole population, (iii) the essentially random nature of the target selection for this study, or (iv) a combination of all the above. We set out how we can learn from this vast data set going forward in an attempt to ensure comparative planetology can be undertaken in the future with facilities such as the JWST, Twinkle, and Ariel. We conclude that a wider simultaneous spectral coverage is required as well as a more structured approach to target selection.
{"title":"Exploring the Ability of Hubble Space Telescope WFC3 G141 to Uncover Trends in Populations of Exoplanet Atmospheres through a Homogeneous Transmission Survey of 70 Gaseous Planets","authors":"Billy Edwards, Quentin Changeat, Angelos Tsiaras, Kai Hou Yip, Ahmed F. Al-Refaie, Lara Anisman, Michelle F. Bieger, Amélie Gressier, Sho Shibata, Nour Skaf, Jeroen Bouwman, James Y-K. Cho, Masahiro Ikoma, Olivia Venot, Ingo Waldmann, Pierre-Olivier Lagage, Giovanna Tinetti","doi":"10.3847/1538-4365/ac9f1a","DOIUrl":"https://doi.org/10.3847/1538-4365/ac9f1a","url":null,"abstract":"Abstract We present analysis of the atmospheres of 70 gaseous extrasolar planets via transit spectroscopy with Hubble’s Wide Field Camera 3 (WFC3). For over half of these, we statistically detect spectral modulation that our retrievals attribute to molecular species. Among these, we use Bayesian hierarchical modeling to search for chemical trends with bulk parameters. We use the extracted water abundance to infer the atmospheric metallicity and compare it to the planet’s mass. We also run chemical equilibrium retrievals, fitting for the atmospheric metallicity directly. However, although previous studies have found evidence of a mass–metallicity trend, we find no such relation within our data. For the hotter planets within our sample, we find evidence for thermal dissociation of dihydrogen and water via the H − opacity. We suggest that the general lack of trends seen across this population study could be due to (i) the insufficient spectral coverage offered by the Hubble Space Telescope’s WFC3 G141 band, (ii) the lack of a simple trend across the whole population, (iii) the essentially random nature of the target selection for this study, or (iv) a combination of all the above. We set out how we can learn from this vast data set going forward in an attempt to ensure comparative planetology can be undertaken in the future with facilities such as the JWST, Twinkle, and Ariel. We conclude that a wider simultaneous spectral coverage is required as well as a more structured approach to target selection.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"7 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135565498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/acf8c7
Yuhao Chen, Zhong Liu, Pengfei Chen, David F. Webb, Qi Hao, Jialiang Hu, Guanchong Cheng, Zhixing Mei, Jing Ye, Qian Wang, Jun Lin
Abstract A current sheet (CS) is the central structure in the disrupting magnetic configuration during solar eruptions. More than 90% of the free magnetic energy (the difference between the energy in the nonpotential magnetic field and that in the potential one) stored in the coronal magnetic field beforehand is converted into the heating and kinetic energy of the plasma, as well as accelerating charged particles, by magnetic reconnection occurring in the CS. However, the detailed physical properties and fine structures of the CS are still unknown, since there is no relevant information obtained via in situ detections. The Parker Solar Probe (PSP) may provide us with such information should it traverse a CS in an eruption. The perihelion of PSP’s final orbit is located at about 10 solar radii from the center of the Sun, so it can observe the CS at a very close distance, or even traverse the CS, which would provide us with a unique opportunity to look into the fine properties and structures of the CS, helping to reveal the detailed physics of large-scale reconnection that would have been impossible before. We evaluate the probability that PSP can traverse a CS, and examine the orbit of a PSP-like spacecraft that has the highest probability to traverse a CS.
{"title":"Can the Parker Solar Probe Detect a CME-flare Current Sheet?","authors":"Yuhao Chen, Zhong Liu, Pengfei Chen, David F. Webb, Qi Hao, Jialiang Hu, Guanchong Cheng, Zhixing Mei, Jing Ye, Qian Wang, Jun Lin","doi":"10.3847/1538-4365/acf8c7","DOIUrl":"https://doi.org/10.3847/1538-4365/acf8c7","url":null,"abstract":"Abstract A current sheet (CS) is the central structure in the disrupting magnetic configuration during solar eruptions. More than 90% of the free magnetic energy (the difference between the energy in the nonpotential magnetic field and that in the potential one) stored in the coronal magnetic field beforehand is converted into the heating and kinetic energy of the plasma, as well as accelerating charged particles, by magnetic reconnection occurring in the CS. However, the detailed physical properties and fine structures of the CS are still unknown, since there is no relevant information obtained via in situ detections. The Parker Solar Probe (PSP) may provide us with such information should it traverse a CS in an eruption. The perihelion of PSP’s final orbit is located at about 10 solar radii from the center of the Sun, so it can observe the CS at a very close distance, or even traverse the CS, which would provide us with a unique opportunity to look into the fine properties and structures of the CS, helping to reveal the detailed physics of large-scale reconnection that would have been impossible before. We evaluate the probability that PSP can traverse a CS, and examine the orbit of a PSP-like spacecraft that has the highest probability to traverse a CS.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"240 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135371156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/acf467
Taiki Kawamuro, Claudio Ricci, Richard F. Mushotzky, Masatoshi Imanishi, Franz E. Bauer, Federica Ricci, Michael J. Koss, George C. Privon, Benny Trakhtenbrot, Takuma Izumi, Kohei Ichikawa, Alejandra F. Rojas, Krista Lynne Smith, Taro Shimizu, Kyuseok Oh, Jakob S. den Brok, Shunsuke Baba, Mislav Baloković, Chin-Shin Chang, Darshan Kakkad, Ryan W. Pfeifle, Matthew J. Temple, Yoshihiro Ueda, Fiona Harrison, Meredith C. Powell, Daniel Stern, Meg Urry, David B. Sanders
Abstract We present a catalog of the millimeter-wave (mm-wave) continuum properties of 98 nearby ( z < 0.05) active galactic nuclei (AGNs) selected from the 70 month Swift/BAT hard-X-ray catalog that have precisely determined X-ray spectral properties and subarcsecond-resolution Atacama Large Millimeter/submillimeter Array Band 6 (211–275 GHz) observations as of 2021 April. Due to the hard-X-ray (>10 keV) selection, the sample is nearly unbiased for obscured systems at least up to Compton-thick-level obscuration, and provides the largest number of AGNs with high-physical-resolution mm-wave data (≲100–200 pc). Our catalog reports emission peak coordinates, spectral indices, and peak fluxes and luminosities at 1.3 mm (230 GHz). Additionally, high-resolution mm-wave images are provided. Using the images and creating radial surface brightness profiles of mm-wave emission, we identify emission extending from the central sources and isolated blob-like emission. Flags indicating the presence of these emission features are tabulated. Among 90 AGNs with significant detections of nuclear emission, 37 AGNs (≈41%) appear to have both or one of extended or blob-like components. We, in particular, investigate AGNs that show well-resolved mm-wave components and find that these seem to have a variety of origins (i.e., a jet, radio lobes, a secondary AGN, stellar clusters, a narrow-line region, galaxy disk, active star formation regions, or AGN-driven outflows), and some components have currently unclear origins.
{"title":"BASS. XXXIV. A Catalog of the Nuclear Millimeter-wave Continuum Emission Properties of AGNs Constrained on Scales ≤ 100–200 pc","authors":"Taiki Kawamuro, Claudio Ricci, Richard F. Mushotzky, Masatoshi Imanishi, Franz E. Bauer, Federica Ricci, Michael J. Koss, George C. Privon, Benny Trakhtenbrot, Takuma Izumi, Kohei Ichikawa, Alejandra F. Rojas, Krista Lynne Smith, Taro Shimizu, Kyuseok Oh, Jakob S. den Brok, Shunsuke Baba, Mislav Baloković, Chin-Shin Chang, Darshan Kakkad, Ryan W. Pfeifle, Matthew J. Temple, Yoshihiro Ueda, Fiona Harrison, Meredith C. Powell, Daniel Stern, Meg Urry, David B. Sanders","doi":"10.3847/1538-4365/acf467","DOIUrl":"https://doi.org/10.3847/1538-4365/acf467","url":null,"abstract":"Abstract We present a catalog of the millimeter-wave (mm-wave) continuum properties of 98 nearby ( z < 0.05) active galactic nuclei (AGNs) selected from the 70 month Swift/BAT hard-X-ray catalog that have precisely determined X-ray spectral properties and subarcsecond-resolution Atacama Large Millimeter/submillimeter Array Band 6 (211–275 GHz) observations as of 2021 April. Due to the hard-X-ray (>10 keV) selection, the sample is nearly unbiased for obscured systems at least up to Compton-thick-level obscuration, and provides the largest number of AGNs with high-physical-resolution mm-wave data (≲100–200 pc). Our catalog reports emission peak coordinates, spectral indices, and peak fluxes and luminosities at 1.3 mm (230 GHz). Additionally, high-resolution mm-wave images are provided. Using the images and creating radial surface brightness profiles of mm-wave emission, we identify emission extending from the central sources and isolated blob-like emission. Flags indicating the presence of these emission features are tabulated. Among 90 AGNs with significant detections of nuclear emission, 37 AGNs (≈41%) appear to have both or one of extended or blob-like components. We, in particular, investigate AGNs that show well-resolved mm-wave components and find that these seem to have a variety of origins (i.e., a jet, radio lobes, a secondary AGN, stellar clusters, a narrow-line region, galaxy disk, active star formation regions, or AGN-driven outflows), and some components have currently unclear origins.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"239 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135372187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.3847/1538-4365/acf83b
M. A. Kubiak, M. Bzowski, P. Swaczyna, E. Möbius, N. A. Schwadron, D. J. McComas
Abstract Direct-sampling observations of interstellar neutral (ISN) species and their secondary populations give information about the physical state of the local interstellar medium and processes occurring in the outer heliosheath. Such observations are performed from Earth’s orbit by the IBEX-Lo experiment on board the Interstellar Boundary Explorer (IBEX) mission. IBEX ISN viewing is restricted to directions close to perpendicular to the Earth–Sun line, which limits the observations of interstellar species to several months during the year. A greatly improved data set will be possible for the upcoming Interstellar Mapping and Acceleration Probe (IMAP) mission due to a novel concept of putting the IMAP ISN detector, IMAP-Lo, on a pivot platform that varies the angle of observation relative to the Sun–Earth line and the detector boresight. Here, we suggest a 2 yr scenario for varying the viewing angle in such a way that all the necessary atom components can be observed sufficiently well to achieve the science goals of the nominal IMAP mission. This scenario facilitates, among others, removal of the correlation of the inflow parameters of interstellar gas, unambiguous analysis of the primary and secondary populations of interstellar helium (He), neon (Ne), and oxygen (O), and determination of the ionization rates of He and Ne free of possible calibration bias. The scheme is operationally simple, provides good counting statistics, and synergizes observations of interstellar species and heliospheric energetic neutral atoms.
{"title":"Science Opportunities for IMAP-Lo Observations of Interstellar Neutral Helium, Neon, and Oxygen during a Maximum of Solar Activity","authors":"M. A. Kubiak, M. Bzowski, P. Swaczyna, E. Möbius, N. A. Schwadron, D. J. McComas","doi":"10.3847/1538-4365/acf83b","DOIUrl":"https://doi.org/10.3847/1538-4365/acf83b","url":null,"abstract":"Abstract Direct-sampling observations of interstellar neutral (ISN) species and their secondary populations give information about the physical state of the local interstellar medium and processes occurring in the outer heliosheath. Such observations are performed from Earth’s orbit by the IBEX-Lo experiment on board the Interstellar Boundary Explorer (IBEX) mission. IBEX ISN viewing is restricted to directions close to perpendicular to the Earth–Sun line, which limits the observations of interstellar species to several months during the year. A greatly improved data set will be possible for the upcoming Interstellar Mapping and Acceleration Probe (IMAP) mission due to a novel concept of putting the IMAP ISN detector, IMAP-Lo, on a pivot platform that varies the angle of observation relative to the Sun–Earth line and the detector boresight. Here, we suggest a 2 yr scenario for varying the viewing angle in such a way that all the necessary atom components can be observed sufficiently well to achieve the science goals of the nominal IMAP mission. This scenario facilitates, among others, removal of the correlation of the inflow parameters of interstellar gas, unambiguous analysis of the primary and secondary populations of interstellar helium (He), neon (Ne), and oxygen (O), and determination of the ionization rates of He and Ne free of possible calibration bias. The scheme is operationally simple, provides good counting statistics, and synergizes observations of interstellar species and heliospheric energetic neutral atoms.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135373103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}