Pengxi LI, Zhonghong LIU, Bing YANG, Zhiyong JIANG, Jingjing YANG
{"title":"Synthesis of Phosphotungstic acid/S-doped g-C3N4 Photocatalyst and Its Photocatalytic Degradation of Organic Pollutants in Aqueous Solutions","authors":"Pengxi LI, Zhonghong LIU, Bing YANG, Zhiyong JIANG, Jingjing YANG","doi":"10.5755/j02.ms.31053","DOIUrl":null,"url":null,"abstract":"The S-doped g-C3N4 (SCN) was prepared by thermal condensation method using thiourea as a precursor, and then the phosphotungstic acid (PTA)/SCN composite photocatalytic material was prepared by reflux adsorption method. The photocatalytic degradation experiments of Rhodamine B showed that SCN20 had the highest photocatalytic degradation rate (74 %), which was 1.9 times and 3.5 times higher than that of PTA (39 %) and SCN (21 %), respectively. The photocatalytic degradation rate of SCN20 was increased by 5 times compared to that of SCN, indicating that the photocatalytic degradation performance of the composite material was significantly improved. The photocatalytic degradation mechanism study revealed that O2- was the main active species in the photocatalytic degradation of Rhodamine B, and the addition of PTA helped the effective separation of electrons-hole and improved the photocatalytic degradation rate. Our PTA/SCN is proposed as an environmental safety tool due to several advantages, such as low cost, convenient preparation, and efficient photocatalytic degradation of Rhodamine B.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":"17 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.ms.31053","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The S-doped g-C3N4 (SCN) was prepared by thermal condensation method using thiourea as a precursor, and then the phosphotungstic acid (PTA)/SCN composite photocatalytic material was prepared by reflux adsorption method. The photocatalytic degradation experiments of Rhodamine B showed that SCN20 had the highest photocatalytic degradation rate (74 %), which was 1.9 times and 3.5 times higher than that of PTA (39 %) and SCN (21 %), respectively. The photocatalytic degradation rate of SCN20 was increased by 5 times compared to that of SCN, indicating that the photocatalytic degradation performance of the composite material was significantly improved. The photocatalytic degradation mechanism study revealed that O2- was the main active species in the photocatalytic degradation of Rhodamine B, and the addition of PTA helped the effective separation of electrons-hole and improved the photocatalytic degradation rate. Our PTA/SCN is proposed as an environmental safety tool due to several advantages, such as low cost, convenient preparation, and efficient photocatalytic degradation of Rhodamine B.
期刊介绍:
It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.