{"title":"Thermal and electrical analysis of N-PVT-FPC hybrid active heating of biogas plant","authors":"GN Tiwari, Rohit Kumar Singh, A S K Sinha","doi":"10.1115/1.4063678","DOIUrl":null,"url":null,"abstract":"Abstract In order to increase biogas production during winter months/cold climatic conditions, a self-sustained N-photo-voltaic thermal and flat plate collectors (PVT-FPC) hybrid active heating biogas plant has been analyzed in terms of thermal energy and electrical energy. A general analytical expression for thermal and electrical energy of biogas plant has been derived as a function of climatic and design parameters from one order coupled differential equations. Various photo-voltaic thermal and flat plate collectors (N-PVT-FPC) configurations have been considered for optimizing maximum electrical and thermal energy gain for a given total number of N-PVT-FPC collectors. Based on mathematical computation for Indian cold climatic conditions, it has been found that the photo-voltaic thermal and flat plate collectors (N-PVT-FPC) combination is always better than the flat plate collectors-photo-voltaic thermal (N-FPC-PVT) collector for maximum electrical and thermal energy. Overall exergy analysis of hybrid active heating of biogas plant has also been carried out.","PeriodicalId":17404,"journal":{"name":"Journal of Thermal Science and Engineering Applications","volume":"72 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Science and Engineering Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063678","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In order to increase biogas production during winter months/cold climatic conditions, a self-sustained N-photo-voltaic thermal and flat plate collectors (PVT-FPC) hybrid active heating biogas plant has been analyzed in terms of thermal energy and electrical energy. A general analytical expression for thermal and electrical energy of biogas plant has been derived as a function of climatic and design parameters from one order coupled differential equations. Various photo-voltaic thermal and flat plate collectors (N-PVT-FPC) configurations have been considered for optimizing maximum electrical and thermal energy gain for a given total number of N-PVT-FPC collectors. Based on mathematical computation for Indian cold climatic conditions, it has been found that the photo-voltaic thermal and flat plate collectors (N-PVT-FPC) combination is always better than the flat plate collectors-photo-voltaic thermal (N-FPC-PVT) collector for maximum electrical and thermal energy. Overall exergy analysis of hybrid active heating of biogas plant has also been carried out.
期刊介绍:
Applications in: Aerospace systems; Gas turbines; Biotechnology; Defense systems; Electronic and photonic equipment; Energy systems; Manufacturing; Refrigeration and air conditioning; Homeland security systems; Micro- and nanoscale devices; Petrochemical processing; Medical systems; Energy efficiency; Sustainability; Solar systems; Combustion systems