Environmental performance assessments of different methods of coal preparation for use in small-capacity boilers: experiment and theory

IF 6.9 1区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Science & Technology Pub Date : 2023-10-05 DOI:10.1007/s40789-023-00623-3
A. N. Kozlov, E. P. Maysyuk, I. Yu. Ivanova
{"title":"Environmental performance assessments of different methods of coal preparation for use in small-capacity boilers: experiment and theory","authors":"A. N. Kozlov, E. P. Maysyuk, I. Yu. Ivanova","doi":"10.1007/s40789-023-00623-3","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation (unscreened, size-graded, briquetted and heat-treated) in automated boilers and boilers with manual loading. The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions, as well as the mass of ash and slag waste. The main pollutants from coal combustion are calculated: particulate matter, benz(a)pyrene, nitrogen oxides, sulfur dioxide, carbon monoxide. Of the greenhouse gases carbon dioxide is calculated. As a result of conducted research it is shown that the simplest preliminary preparation (size-graded) of coal significantly improves combustion efficiency and environmental performance: emissions are reduced by 13% for hard coal and up to 20% for brown coal. The introduction of automated boilers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2–3 times. The best environmental indicators correspond to heat-treated lignite, which is characterized by the absence of sulfur dioxide emissions.","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"60 1","pages":"0"},"PeriodicalIF":6.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40789-023-00623-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The purpose of this article is to receive environmental assessments of combustion of different types of coal fuel depending on the preparation (unscreened, size-graded, briquetted and heat-treated) in automated boilers and boilers with manual loading. The assessments were made on the basis of data obtained from experimental methods of coal preparation and calculated methods of determining the amount of pollutant and greenhouse gas emissions, as well as the mass of ash and slag waste. The main pollutants from coal combustion are calculated: particulate matter, benz(a)pyrene, nitrogen oxides, sulfur dioxide, carbon monoxide. Of the greenhouse gases carbon dioxide is calculated. As a result of conducted research it is shown that the simplest preliminary preparation (size-graded) of coal significantly improves combustion efficiency and environmental performance: emissions are reduced by 13% for hard coal and up to 20% for brown coal. The introduction of automated boilers with heat-treated coal in small boiler facilities allows to reduce emissions and ash and slag waste by 2–3 times. The best environmental indicators correspond to heat-treated lignite, which is characterized by the absence of sulfur dioxide emissions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小容量锅炉不同选煤方法的环境性能评价:实验与理论
摘要本文的目的是对不同类型的煤燃料在自动锅炉和人工加载锅炉中不同制备方式(未筛选、分级、压块和热处理)的燃烧进行环境评价。评价依据选煤实验方法获得的数据和污染物排放量、温室气体排放量以及灰渣废物质量的计算方法进行。计算了燃煤产生的主要污染物:颗粒物、苯(a)芘、氮氧化物、二氧化硫、一氧化碳。计算了温室气体中的二氧化碳。研究结果表明,最简单的煤的初步制备(粒度分级)显着提高了燃烧效率和环境性能:硬煤的排放量减少了13%,褐煤的排放量减少了20%。在小型锅炉设施中采用热处理煤的自动化锅炉,可以减少2-3倍的排放和灰渣废物。最好的环境指标对应于热处理的褐煤,其特点是没有二氧化硫排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.40
自引率
8.40%
发文量
678
审稿时长
12 weeks
期刊介绍: The International Journal of Coal Science & Technology is a peer-reviewed open access journal that focuses on key topics of coal scientific research and mining development. It serves as a forum for scientists to present research findings and discuss challenging issues in the field. The journal covers a range of topics including coal geology, geochemistry, geophysics, mineralogy, and petrology. It also covers coal mining theory, technology, and engineering, as well as coal processing, utilization, and conversion. Additionally, the journal explores coal mining environment and reclamation, along with related aspects. The International Journal of Coal Science & Technology is published with China Coal Society, who also cover the publication costs. This means that authors do not need to pay an article-processing charge.
期刊最新文献
Coal ash resources and potential for rare earth element production in the United States Ecological environment quality assessment of coal mining cities based on GEE platform: A case study of Shuozhou, China Study on signal characteristics of burst tendency coal under different loading rates Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1