首页 > 最新文献

International Journal of Coal Science & Technology最新文献

英文 中文
Study on signal characteristics of burst tendency coal under different loading rates 不同装载率下爆倾向煤的信号特征研究
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-08-22 DOI: 10.1007/s40789-024-00724-7
Chao Zhou, Xueqiu He, Dazhao Song, Zhenlei Li, Huakang Yang, Yang Liu, Lei Guo

In order to study the mechanics, acoustic emission (AE) and electromagnetic emission (EME) response law of bursting liability coal at different loading rates, uniaxial compression tests were carried out on coal mass from Konggu Coal Mine. The corresponding relations among mechanical properties, AE and EME signals in the process of coal failure under loading were analyzed, and the energy evolution law of coal failure with bursting liability under loading rate was discussed. The results show that within a certain range of loading rate, the higher the loading rate, the higher the compressive strength and peak load of bursting liability coal, and the shorter the time for coal to reach the peak load. Under different loading rates, the mechanics, AE and EME signals of coal samples can be well corresponded. When the loading rate is low, the number of blocks destroyed of coal sample is large and the block size is relatively small, and the blocks are mainly scattered around the test platform. When the loading rate is high, the number of damaged blocks is relatively small and the block size is relatively large, and the blocks are far away from the test bench. When loading at a low rate, the internal cracks in coal can be fully developed and connected, and the energy release rate is relatively uniform in the process of loading and failure of coal sample. In the case of high loading rate, the energy release rate of coal sample in the loading process is much smaller than that in the moment of failure. Combining the above test results with the actual situation of the working face, it can be concluded that the total energy stored in the coal of fast mining increases and the threshold of impact decreases compared with that of slow mining. Therefore, under the disturbance of external dynamic load, rapid mining is more likely to induce rock burst.

为了研究不同加载速率下爆裂责任煤的力学、声发射(AE)和电磁发射(EME)响应规律,对孔古煤矿的煤块进行了单轴压缩试验。分析了加载条件下煤体破坏过程中力学性能、AE 和 EME 信号之间的对应关系,探讨了加载速率下爆破责任煤体破坏的能量演化规律。结果表明,在一定加载速率范围内,加载速率越大,爆破责任煤的抗压强度和峰值载荷越高,煤达到峰值载荷的时间越短。在不同加载速率下,煤样的力学信号、AE 信号和 EME 信号均能很好地对应。当加载速率较低时,煤样破坏的块数较多,块体尺寸相对较小,块体主要分散在测试平台周围。当加载速率较高时,损坏的煤块数量相对较少,煤块尺寸相对较大,煤块离试验台较远。当加载速率较低时,煤的内部裂缝能够充分发育并连通,煤样在加载和破坏过程中能量释放速率相对均匀。在加载速率较高的情况下,煤样在加载过程中的能量释放速率远小于破坏瞬间的能量释放速率。结合上述试验结果和工作面的实际情况,可以得出结论:与慢速开采相比,快速开采时煤炭中储存的总能量增加,冲击阈值降低。因此,在外部动载荷的扰动下,快速开采更容易诱发岩爆。
{"title":"Study on signal characteristics of burst tendency coal under different loading rates","authors":"Chao Zhou, Xueqiu He, Dazhao Song, Zhenlei Li, Huakang Yang, Yang Liu, Lei Guo","doi":"10.1007/s40789-024-00724-7","DOIUrl":"https://doi.org/10.1007/s40789-024-00724-7","url":null,"abstract":"<p>In order to study the mechanics, acoustic emission (AE) and electromagnetic emission (EME) response law of bursting liability coal at different loading rates, uniaxial compression tests were carried out on coal mass from Konggu Coal Mine. The corresponding relations among mechanical properties, AE and EME signals in the process of coal failure under loading were analyzed, and the energy evolution law of coal failure with bursting liability under loading rate was discussed. The results show that within a certain range of loading rate, the higher the loading rate, the higher the compressive strength and peak load of bursting liability coal, and the shorter the time for coal to reach the peak load. Under different loading rates, the mechanics, AE and EME signals of coal samples can be well corresponded. When the loading rate is low, the number of blocks destroyed of coal sample is large and the block size is relatively small, and the blocks are mainly scattered around the test platform. When the loading rate is high, the number of damaged blocks is relatively small and the block size is relatively large, and the blocks are far away from the test bench. When loading at a low rate, the internal cracks in coal can be fully developed and connected, and the energy release rate is relatively uniform in the process of loading and failure of coal sample. In the case of high loading rate, the energy release rate of coal sample in the loading process is much smaller than that in the moment of failure. Combining the above test results with the actual situation of the working face, it can be concluded that the total energy stored in the coal of fast mining increases and the threshold of impact decreases compared with that of slow mining. Therefore, under the disturbance of external dynamic load, rapid mining is more likely to induce rock burst.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling 基于图像的煤层气储层三维异质孔隙结构定量探测以及孔隙网络模型的渗透率估算
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-08-20 DOI: 10.1007/s40789-024-00722-9
Peng Liu, Yulong Zhao, Zhengduo Zhao, Huiming Yang, Baisheng Nie, Hengyi He, Quangui Li, Guangjie Bao

Coalbed methane (CBM) recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment. Fully understanding the complex structure of coal and its transport properties is crucial for CBM development. This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals. It shows that the porosity is 7.04%–8.47% and 10.88%–12.11%, and the pore connectivity is 0.5422–0.6852 and 0.7948–0.9186 for coal samples 1 and 2, respectively. The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure. The results show that the pore structure of sample 2 is more complex and developed, with lower tortuosity, indicating the higher fluid deliverability of pore system in sample 2. The tortuosity in three-direction is significantly different, indicating that the pore structure of the studied coals has significant anisotropy. The equivalent pore network model (PNM) was extracted, and the anisotropic permeability was estimated by PNM gas flow simulation. The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure. The permeability in the horizontal direction is much greater than that in the vertical direction, indicating that the dominant transportation channel is along the horizontal direction of the studied coals. The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size, connectivity, curvature, permeability, and its anisotropic characteristics at micron-scale resolution. This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures.

煤层气储量巨大,低碳燃烧对环境有益,因此煤层气回收备受全球关注。充分了解煤的复杂结构及其传输特性对于煤层气开发至关重要。本研究介绍了采用汞侵入和μ-CT技术对两种无烟煤的三维孔隙结构进行定量分析。结果表明,煤样 1 和煤样 2 的孔隙度分别为 7.04%-8.47% 和 10.88%-12.11%,孔隙连通性分别为 0.5422-0.6852 和 0.7948-0.9186。根据三维孔隙结构获得的数据计算了分形维数和孔隙几何迂回度。结果表明,煤样 2 的孔隙结构更复杂、更发达,孔隙几何扭曲度更低,这表明煤样 2 的孔隙系统具有更高的流体输送能力。三维方向的曲折度差异显著,表明所研究煤炭的孔隙结构具有明显的各向异性。提取了等效孔隙网络模型(PNM),并通过 PNM 气体流动模拟估算了各向异性渗透率。结果表明,渗透率的各向异性与三维孔隙结构中的切片表面孔隙度分布一致。水平方向的渗透率远大于垂直方向的渗透率,表明所研究煤炭的主要运输通道是沿水平方向的。该研究成果实现了煤炭三维复杂结构的可视化,在微米级分辨率下全面捕捉并量化了孔隙尺寸、连通性、曲率、渗透率及其各向异性特征。这为研究实际孔隙结构中的传质行为和相关传输机制提供了先决条件。
{"title":"Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling","authors":"Peng Liu, Yulong Zhao, Zhengduo Zhao, Huiming Yang, Baisheng Nie, Hengyi He, Quangui Li, Guangjie Bao","doi":"10.1007/s40789-024-00722-9","DOIUrl":"https://doi.org/10.1007/s40789-024-00722-9","url":null,"abstract":"<p>Coalbed methane (CBM) recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment. Fully understanding the complex structure of coal and its transport properties is crucial for CBM development. This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals. It shows that the porosity is 7.04%–8.47% and 10.88%–12.11%, and the pore connectivity is 0.5422–0.6852 and 0.7948–0.9186 for coal samples 1 and 2, respectively. The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure. The results show that the pore structure of sample 2 is more complex and developed, with lower tortuosity, indicating the higher fluid deliverability of pore system in sample 2. The tortuosity in three-direction is significantly different, indicating that the pore structure of the studied coals has significant anisotropy. The equivalent pore network model (PNM) was extracted, and the anisotropic permeability was estimated by PNM gas flow simulation. The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure. The permeability in the horizontal direction is much greater than that in the vertical direction, indicating that the dominant transportation channel is along the horizontal direction of the studied coals. The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size, connectivity, curvature, permeability, and its anisotropic characteristics at micron-scale resolution. This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix 不同等级印度煤炭中溶剂萃取大分子的光谱特征:荧光激发-发射矩阵的启示
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-08-12 DOI: 10.1007/s40789-024-00721-w
Archchi Sarkar, Uttam Kumar Bhui, Krittibas Das, Sudip Bhattacharyya, Jitendra Kumar, Darshan Halari

Solvent-extracted fractions of six Indian coal samples of different ranks were investigated using multiple geochemical, petrological and spectroscopic proxies and an attempt was made to indicate possible fingerprint regions for different polycyclic aromatic hydrocarbons (PAH) with the help of excitation-emission matrix (EEM). In this study, for the very first time, the influence of rank and maturation of organic matter in the characterisation of coal solvent-extracts from Indian coals were perceived from the viewpoint of fluorescence EEM. Vitrinite reflectance (VRo) values were used to determine the general ranks of the original coal samples viz. lignite, subbituminous, bituminous and anthracite. Different fluorescence peak regions corresponding to different fused aromatic ring (FAR) systems were delineated using the EEM and their indicative depositional environments could be inferred. Our observations indicate that solvent-extracted fractions of low rank coals comprise of a larger number of shorter carbon chains compared to the other samples. For the low rank coal samples, the solvent-extracts show a strong humic influence and the presence of smaller PAH rings while for the medium rank coals, the extracted fractions tend to show a more bimodal distribution of PAHs, possibly comprising of different sized PAHs. Higher fluorescence sensitivity and quick response of smaller PAHs impart a singular centralised region in the EEM for the low rank coal samples while interference in the fluorescence of differently sized PAHs indicate a multimodal distribution of the fluorophores in the medium rank coals. The high rank coal used in this study shows a bimodal distribution with very low intensity of the peaks, indicating the low abundance of extractable macromolecules, possibly as a result of deformation.

利用多种地球化学、岩石学和光谱学代用指标对六种不同等级的印度煤炭样品的溶剂萃取馏分进行了研究,并尝试借助激发-发射矩阵(EEM)来指出不同多环芳烃(PAH)的可能指纹区域。在这项研究中,首次从荧光 EEM 的角度研究了有机物的等级和成熟度对印度煤炭溶剂萃取物特征的影响。荧光反射率(VRo)值用于确定原始煤样的一般等级,即褐煤、亚烟煤、烟煤和无烟煤。利用电子显微镜(EEM)划分了与不同熔融芳香环(FAR)系统相对应的不同荧光峰区,并推断出其指示性沉积环境。我们的观察结果表明,与其他煤样相比,溶剂萃取的低阶煤馏分含有更多的短碳链。对于低阶煤炭样品,溶剂萃取物显示出强烈的腐殖质影响和较小的多环芳烃环的存在,而对于中阶煤炭,萃取馏分往往显示出更多的多环芳烃的双峰分布,可能包括不同大小的多环芳烃。较小的多环芳烃具有较高的荧光灵敏度和快速反应能力,因此低阶煤样品的 EEM 中会出现一个单一的集中区域,而不同大小的多环芳烃的荧光干扰则表明中阶煤中的荧光团呈多模式分布。本研究中使用的高阶煤显示出峰值强度很低的双峰分布,表明可提取的大分子含量很低,这可能是变形的结果。
{"title":"Spectral signatures of solvent-extracted macromolecules in Indian coals of different rank: Insights from fluorescence excitation-emission matrix","authors":"Archchi Sarkar, Uttam Kumar Bhui, Krittibas Das, Sudip Bhattacharyya, Jitendra Kumar, Darshan Halari","doi":"10.1007/s40789-024-00721-w","DOIUrl":"https://doi.org/10.1007/s40789-024-00721-w","url":null,"abstract":"<p>Solvent-extracted fractions of six Indian coal samples of different ranks were investigated using multiple geochemical, petrological and spectroscopic proxies and an attempt was made to indicate possible fingerprint regions for different polycyclic aromatic hydrocarbons (PAH) with the help of excitation-emission matrix (EEM). In this study, for the very first time, the influence of rank and maturation of organic matter in the characterisation of coal solvent-extracts from Indian coals were perceived from the viewpoint of fluorescence EEM. Vitrinite reflectance (VR<sub>o</sub>) values were used to determine the general ranks of the original coal samples viz. lignite, subbituminous, bituminous and anthracite. Different fluorescence peak regions corresponding to different fused aromatic ring (FAR) systems were delineated using the EEM and their indicative depositional environments could be inferred. Our observations indicate that solvent-extracted fractions of low rank coals comprise of a larger number of shorter carbon chains compared to the other samples. For the low rank coal samples, the solvent-extracts show a strong humic influence and the presence of smaller PAH rings while for the medium rank coals, the extracted fractions tend to show a more bimodal distribution of PAHs, possibly comprising of different sized PAHs. Higher fluorescence sensitivity and quick response of smaller PAHs impart a singular centralised region in the EEM for the low rank coal samples while interference in the fluorescence of differently sized PAHs indicate a multimodal distribution of the fluorophores in the medium rank coals. The high rank coal used in this study shows a bimodal distribution with very low intensity of the peaks, indicating the low abundance of extractable macromolecules, possibly as a result of deformation.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rate transient analysis for multilateral horizontal well in natural gas hydrate: superposition principle and reciprocity 天然气水合物中多边水平井的速率瞬态分析:叠加原理和互易性
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-08-11 DOI: 10.1007/s40789-024-00720-x
Tianbi Ma, Hongyang Chu, Jiawei Li, Jingxuan Zhang, Yubao Gao, Weiyao Zhu, W. John Lee

Due to high energy density, clean combustion products and abundant resources, natural gas hydrates (NGHs) have been regarded as an important clean energy source with the potential for large-scale development and utilization. However, pilot tests in NGHs show that their production rates are far below commercial needs. Multilateral well technology may lead to a solution to this problem because it can dramatically expand the drainage area of production wells. This paper presents the practical rate transient analysis for multilateral horizontal wells in NGHs. In developing solution to the diffusivity equation of multilateral horizontal wells in NGHs, the superposition principle and reciprocity are applied. We wrote the governing equation in cylindrical coordinates to describe the NGH flow process. We used the moving boundaries and dissociation coefficients to model the solid-to-gas transition process in hydrates. To obtain solutions for flow in hydrate reservoirs, we used Laplace transforms and the Stehfest numerical inversion method. Superposition principle and Gaussian elimination are applied to obtain the desired solution for multilateral horizontal wells. We validated our proposed model with a commercial numerical simulator. By performing sensitivity analyses, effects on production behavior of the number of branches, dissociation coefficient, radius of the region with dissociated hydrate, and dispersion ratio are determined. A synthetic case study is conducted to show the typical production behaviors.

天然气水合物(NGHs)具有能量密度高、燃烧产物清洁、资源丰富等特点,一直被视为一种重要的清洁能源,具有大规模开发和利用的潜力。然而,天然气水合物的试点测试表明,其生产率远远低于商业需求。多边井技术可以显著扩大生产井的排水面积,因此有可能解决这一问题。本文介绍了 NGHs 中多边水平井的实用速率瞬态分析。在求解 NGHs 中多边水平井的扩散方程时,应用了叠加原理和互易原理。我们在圆柱坐标中编写了控制方程,以描述 NGH 的流动过程。我们使用移动边界和解离系数来模拟水合物中固态到气态的转变过程。为了获得水合物储层中的流动解,我们使用了拉普拉斯变换和 Stehfest 数值反演方法。应用叠加原理和高斯消去法获得多边水平井的理想解。我们利用商业数值模拟器验证了我们提出的模型。通过进行敏感性分析,确定了分支数量、解离系数、解离水合物区域半径和分散比对生产行为的影响。还进行了一项合成案例研究,以展示典型的生产行为。
{"title":"Rate transient analysis for multilateral horizontal well in natural gas hydrate: superposition principle and reciprocity","authors":"Tianbi Ma, Hongyang Chu, Jiawei Li, Jingxuan Zhang, Yubao Gao, Weiyao Zhu, W. John Lee","doi":"10.1007/s40789-024-00720-x","DOIUrl":"https://doi.org/10.1007/s40789-024-00720-x","url":null,"abstract":"<p>Due to high energy density, clean combustion products and abundant resources, natural gas hydrates (NGHs) have been regarded as an important clean energy source with the potential for large-scale development and utilization. However, pilot tests in NGHs show that their production rates are far below commercial needs. Multilateral well technology may lead to a solution to this problem because it can dramatically expand the drainage area of production wells. This paper presents the practical rate transient analysis for multilateral horizontal wells in NGHs. In developing solution to the diffusivity equation of multilateral horizontal wells in NGHs, the superposition principle and reciprocity are applied. We wrote the governing equation in cylindrical coordinates to describe the NGH flow process. We used the moving boundaries and dissociation coefficients to model the solid-to-gas transition process in hydrates. To obtain solutions for flow in hydrate reservoirs, we used Laplace transforms and the Stehfest numerical inversion method. Superposition principle and Gaussian elimination are applied to obtain the desired solution for multilateral horizontal wells. We validated our proposed model with a commercial numerical simulator. By performing sensitivity analyses, effects on production behavior of the number of branches, dissociation coefficient, radius of the region with dissociated hydrate, and dispersion ratio are determined. A synthetic case study is conducted to show the typical production behaviors.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of ground subsidence response to an unconventional longwall panel layout 非常规长壁面板布局的地面沉降响应研究
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-08-06 DOI: 10.1007/s40789-024-00719-4
Pengfei Wang, Zhuang Zhu, Linfeng Guo, Huixian Wang, Yue Qu, Yaoxiong Zhang, Linwei Wang, Hua Wang

Ground subsidence caused by extraction of longwall panels has always been a great concern all over the world. Conventional longwall mining system (CLMS) gives rise to wavy subsidence causing great damage to surface structures. A coal mine in Shanxi, China, utilizes a split-level longwall layout (SLL) for a sub-horizontal No. 8 coal seam to improve the cavability of mudstone interlayer and top coal. This layout, however, also produced unexpectedly favorable surface subsidence. Subsidence of No. 6 and No. 8 longwall panels was monitored while mining was conducted. Field instrumentation and numerical simulation were carried out. It is demonstrated that an asymmetric subsidence profile with stepped subsidence and cracks occurred on the tailgate side but relatively mild and smooth deformation on the other. Due to elimination of conventional parallelepiped gate pillar, No. 6 and No. 8 gobs were connected. Extraction of two SLL panels acted as one supercritical panel. The maximum possible subsidence was reached which lowers the likelihood of potential future secondary subsidence as underground gob fractures and voids have closed. Therefore, SLL is more favorable for post-mining land reuse as gobs are more consolidated underground.

长壁开采造成的地面沉降一直是全世界都非常关注的问题。传统的长壁开采系统(CLMS)会产生波浪形沉降,对地表结构造成巨大破坏。中国山西的一个煤矿在 8 号煤层采用了分层长壁布置(SLL),以改善泥岩夹层和顶煤的可采性。然而,这种布局也产生了意想不到的地表下沉。在开采过程中,对 6 号和 8 号长壁面板的下沉进行了监测。进行了现场仪器测量和数值模拟。结果表明,不对称下沉剖面在尾板一侧出现了阶梯状下沉和裂缝,而在另一侧则出现了相对温和、平滑的变形。由于取消了传统的平行管状闸门支柱,6 号和 8 号闸门被连接起来。两个 SLL 面板的抽取就像一个超临界面板。由于地下岩块裂缝和空隙已经闭合,因此达到了最大可能的下沉量,降低了未来可能出现的二次下沉的可能性。因此,SLL 更有利于开采后的土地再利用,因为地下岩块更加坚固。
{"title":"Investigation of ground subsidence response to an unconventional longwall panel layout","authors":"Pengfei Wang, Zhuang Zhu, Linfeng Guo, Huixian Wang, Yue Qu, Yaoxiong Zhang, Linwei Wang, Hua Wang","doi":"10.1007/s40789-024-00719-4","DOIUrl":"https://doi.org/10.1007/s40789-024-00719-4","url":null,"abstract":"<p>Ground subsidence caused by extraction of longwall panels has always been a great concern all over the world. Conventional longwall mining system (CLMS) gives rise to wavy subsidence causing great damage to surface structures. A coal mine in Shanxi, China, utilizes a split-level longwall layout (SLL) for a sub-horizontal No. 8 coal seam to improve the cavability of mudstone interlayer and top coal. This layout, however, also produced unexpectedly favorable surface subsidence. Subsidence of No. 6 and No. 8 longwall panels was monitored while mining was conducted. Field instrumentation and numerical simulation were carried out. It is demonstrated that an asymmetric subsidence profile with stepped subsidence and cracks occurred on the tailgate side but relatively mild and smooth deformation on the other. Due to elimination of conventional parallelepiped gate pillar, No. 6 and No. 8 gobs were connected. Extraction of two SLL panels acted as one supercritical panel. The maximum possible subsidence was reached which lowers the likelihood of potential future secondary subsidence as underground gob fractures and voids have closed. Therefore, SLL is more favorable for post-mining land reuse as gobs are more consolidated underground.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic coal gasification: mechanism, kinetics, and reactor model 催化煤气化:机理、动力学和反应器模型
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1007/s40789-024-00712-x
Weiwei Li, Chen Wang, Zhongliang Yu, Yuncai Song

Catalytic coal gasification is a promising technology in the field of clean coal utilization. A comprehensive understanding of mechanisms, reaction kinetic, and reactor model is crucial. This article summarizes and analyzes the catalytic mechanisms of key reactions, such as C–O2, C–CO2, C–H2O, and CO–H2. It also compares various kinetic models, including shrinking core model, random pore model, volume model and their respective modifications. Additionally, the article delves into mathematical modellings of catalytic coal gasification, encompassing molecular models or density functional theory, empirical model, computational fluid dynamics, Aspen modeling, and artificial neural network. The aim is to provide a roadmap for the development and scale up of reactors used in catalytic coal gasification.

催化煤气化是煤炭清洁利用领域一项前景广阔的技术。全面了解机理、反应动力学和反应器模型至关重要。本文总结并分析了 C-O2、C-CO2、C-H2O 和 CO-H2 等关键反应的催化机理。文章还比较了各种动力学模型,包括缩芯模型、随机孔模型、体积模型及其各自的修正。此外,文章还深入研究了催化煤气化的数学模型,包括分子模型或密度泛函理论、经验模型、计算流体动力学、Aspen 模型和人工神经网络。目的是为催化煤气化反应器的开发和放大提供路线图。
{"title":"Catalytic coal gasification: mechanism, kinetics, and reactor model","authors":"Weiwei Li, Chen Wang, Zhongliang Yu, Yuncai Song","doi":"10.1007/s40789-024-00712-x","DOIUrl":"https://doi.org/10.1007/s40789-024-00712-x","url":null,"abstract":"<p>Catalytic coal gasification is a promising technology in the field of clean coal utilization. A comprehensive understanding of mechanisms, reaction kinetic, and reactor model is crucial. This article summarizes and analyzes the catalytic mechanisms of key reactions, such as C–O<sub>2</sub>, C–CO<sub>2</sub>, C–H<sub>2</sub>O, and CO–H<sub>2</sub>. It also compares various kinetic models, including shrinking core model, random pore model, volume model and their respective modifications. Additionally, the article delves into mathematical modellings of catalytic coal gasification, encompassing molecular models or density functional theory, empirical model, computational fluid dynamics, Aspen modeling, and artificial neural network. The aim is to provide a roadmap for the development and scale up of reactors used in catalytic coal gasification.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of synergistic behavior during bituminous coal-cow manure co-gasification: The role of intrinsic AAEM and organic matter 烟煤-牛粪联合气化过程中的协同行为研究:固有 AAEM 和有机物的作用
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-28 DOI: 10.1007/s40789-024-00694-w
Hongqiao Lu, Meng Ma, Juntao Wei, Yonghui Bai, Peng Lv, Jiaofei Wang, Xudong Song, Guanghua Lu, Guangsuo Yu

Co-thermal chemical conversion of coal and biomass is one of the important ways to realize efficient and clean utilization of coal. In this study, a typical Ningdong coal-Yangchangwan bituminous coal and cow manure were used to study the synergistic effect of intrinsic alkali, alkaline earth metals (AAEM) and organic matter on the co-gasification of coal and biomass by thermogravimetry analyzer (TG). The results showed that AAEM had obvious synergistic promotion effect on the gasification of a bituminous coal-cow manure mixture in the isothermal gasification (1000 ℃), whereas the organic matter will show the opposite effect on the process. To further investigate the effect of organic matter on the gasification process, the influence of organic matter on non-isothermal (25-1000 ℃) gasification reaction was investigated with heating rate of 10 ℃ /min, the kinetic parameters of the gasification reaction were obtained by Coats-Redfern method. The increase of biomass mass fraction in the sample facilitates the migration of alkali metals from the material to the solid phase. The possible mechanism of the synergistic effect of intrinsic AAEM/organic matter on the co-gasification process was proposed.

煤与生物质共热化学转化是实现煤炭高效清洁利用的重要途径之一。本研究以典型的宁东煤-羊场湾烟煤和牛粪为原料,利用热重分析仪(TG)研究了固有碱、碱土金属(AAEM)和有机质对煤与生物质共气化的协同效应。结果表明,在等温气化(1000 ℃)过程中,AAEM 对烟煤-牛粪混合物的气化有明显的协同促进作用,而有机物对该过程的影响则相反。为了进一步研究有机物对气化过程的影响,研究了有机物对非等温(25-1000 ℃)气化反应的影响,加热速率为 10 ℃/min,气化反应动力学参数由 Coats-Redfern 方法获得。样品中生物质质量分数的增加促进了碱金属从材料向固相的迁移。提出了固有 AAEM/有机物对协同气化过程产生协同效应的可能机制。
{"title":"Study of synergistic behavior during bituminous coal-cow manure co-gasification: The role of intrinsic AAEM and organic matter","authors":"Hongqiao Lu, Meng Ma, Juntao Wei, Yonghui Bai, Peng Lv, Jiaofei Wang, Xudong Song, Guanghua Lu, Guangsuo Yu","doi":"10.1007/s40789-024-00694-w","DOIUrl":"https://doi.org/10.1007/s40789-024-00694-w","url":null,"abstract":"<p>Co-thermal chemical conversion of coal and biomass is one of the important ways to realize efficient and clean utilization of coal. In this study, a typical Ningdong coal-Yangchangwan bituminous coal and cow manure were used to study the synergistic effect of intrinsic alkali, alkaline earth metals (AAEM) and organic matter on the co-gasification of coal and biomass by thermogravimetry analyzer (TG). The results showed that AAEM had obvious synergistic promotion effect on the gasification of a bituminous coal-cow manure mixture in the isothermal gasification (1000 ℃), whereas the organic matter will show the opposite effect on the process. To further investigate the effect of organic matter on the gasification process, the influence of organic matter on non-isothermal (25-1000 ℃) gasification reaction was investigated with heating rate of 10 ℃ /min, the kinetic parameters of the gasification reaction were obtained by Coats-Redfern method. The increase of biomass mass fraction in the sample facilitates the migration of alkali metals from the material to the solid phase. The possible mechanism of the synergistic effect of intrinsic AAEM/organic matter on the co-gasification process was proposed.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extractability and mineralogical evaluation of rare earth elements from Waterberg Coalfield run-of-mine and discard coal 瓦特贝格煤田采煤和弃煤中稀土元素的可提取性和矿物学评价
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-24 DOI: 10.1007/s40789-024-00702-z
Agnes Modiga, Orevaoghene Eterigho-Ikelegbe, Samson Bada

This study explores the extraction of rare earth elements (REEs) from high-ash run-of-mine and discard coal sourced from the Waterberg Coalfield. Three distinct methods were employed: (1) ultrasonic-assisted caustic digestion; (2) direct acid leaching; and (3) ultrasonic-assisted caustic-acid leaching. Inductively coupled plasma mass spectrometry was utilized to quantify REEs in both the coals and resultant leachates. Leaching the coals with 40% NaOH at 80 °C, along with 40 kHz sonication, yielded a total rare earth element (TREE) recovery of less than 2%. Notable enrichment of REEs was observed in the run-of-mine and discard coal by 17% and 19%, respectively. Upon employing 7.5% HCl, a recovery of less than 11.0% for TREE was achieved in both coal samples. However, leaching the caustic digested coal samples with 7.5% HCl significantly enhanced the TREE recovery to 88.8% and 80.0% for run-of-mine and discard coal, respectively. X-ray diffraction analysis identified kaolinite and quartz as the predominant minerals. Scanning electron microscopy-energy dispersive microanalysis revealed monazite and xenotime as the REE-bearing minerals within the coal samples. These minerals were found either liberated, attached to, or encapsulated by the clay-quartz matrices. Further mineralogical assessments highlighted the increased REE concentrations in coals post-caustic digestion and subsequent recovery during acid leaching. This increase was attributed to the partial dissolution of kaolinite encapsulating the RE-phosphates and the digestion of REE-bearing minerals. Notably, undissolved REE-bearing elements in the caustic-acid-leached coal indicated the necessity of harsh leaching conditions to augment REE recovery from these coal samples.

本研究探讨了从沃特伯格煤田的高灰分原煤和弃煤中提取稀土元素(REEs)的方法。采用了三种不同的方法:(1) 超声波辅助苛性钠消化法;(2) 直接酸浸法;(3) 超声波辅助苛性钠-酸浸法。利用电感耦合等离子体质谱法对煤炭和浸出液中的 REEs 进行量化。在 80 °C 下用 40% 的 NaOH 和 40 kHz 的超声波对煤炭进行浸出,其稀土元素总回收率低于 2%。在原煤和弃煤中观察到的稀土元素富集率分别为 17% 和 19%。在使用 7.5% HCl 时,两个煤样中的 TREE 回收率均低于 11.0%。然而,用 7.5% HCl 浸取经过苛性钠消化的煤样后,矿前煤和废弃煤的 TREE 回收率分别显著提高到 88.8% 和 80.0%。X 射线衍射分析确定高岭石和石英为主要矿物。扫描电子显微镜-能量色散显微分析显示,煤样中的独居石和氙石是含 REE 的矿物。这些矿物或被释放出来,或附着在粘土-石英基质上,或被粘土-石英基质包裹。进一步的矿物学评估表明,在苛性钠消化后和随后的酸浸出过程中,煤炭中的 REE 浓度有所增加。这种增加可归因于包裹稀土磷酸盐的高岭石的部分溶解和含稀土元素矿物的消化。值得注意的是,苛性碱-酸浸出煤中未溶解的含 REE 元素表明,必须在苛刻的浸出条件下才能提高这些煤样的 REE 回收率。
{"title":"Extractability and mineralogical evaluation of rare earth elements from Waterberg Coalfield run-of-mine and discard coal","authors":"Agnes Modiga, Orevaoghene Eterigho-Ikelegbe, Samson Bada","doi":"10.1007/s40789-024-00702-z","DOIUrl":"https://doi.org/10.1007/s40789-024-00702-z","url":null,"abstract":"<p>This study explores the extraction of rare earth elements (REEs) from high-ash run-of-mine and discard coal sourced from the Waterberg Coalfield. Three distinct methods were employed: (1) ultrasonic-assisted caustic digestion; (2) direct acid leaching; and (3) ultrasonic-assisted caustic-acid leaching. Inductively coupled plasma mass spectrometry was utilized to quantify REEs in both the coals and resultant leachates. Leaching the coals with 40% NaOH at 80 °C, along with 40 kHz sonication, yielded a total rare earth element (TREE) recovery of less than 2%. Notable enrichment of REEs was observed in the run-of-mine and discard coal by 17% and 19%, respectively. Upon employing 7.5% HCl, a recovery of less than 11.0% for TREE was achieved in both coal samples. However, leaching the caustic digested coal samples with 7.5% HCl significantly enhanced the TREE recovery to 88.8% and 80.0% for run-of-mine and discard coal, respectively. X-ray diffraction analysis identified kaolinite and quartz as the predominant minerals. Scanning electron microscopy-energy dispersive microanalysis revealed monazite and xenotime as the REE-bearing minerals within the coal samples. These minerals were found either liberated, attached to, or encapsulated by the clay-quartz matrices. Further mineralogical assessments highlighted the increased REE concentrations in coals post-caustic digestion and subsequent recovery during acid leaching. This increase was attributed to the partial dissolution of kaolinite encapsulating the RE-phosphates and the digestion of REE-bearing minerals. Notably, undissolved REE-bearing elements in the caustic-acid-leached coal indicated the necessity of harsh leaching conditions to augment REE recovery from these coal samples.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole 含单孔岩石的动态力学响应和断裂机制的数值模拟
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-19 DOI: 10.1007/s40789-024-00718-5
Zhenyu Han, Kai Liu, Jinyin Ma, Diyuan Li

Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.

岩洞和隧道经常受到动态载荷的影响,对岩石结构的安全构成潜在的重大威胁。为了便于理解洞口周围的动态断裂,我们建立了一系列离散元素模型,以数值方法研究洞口形状对动态力学性能和裂缝演化的影响。结果表明,孔洞的存在大大降低了动态强度,而动态强度的降低与孔洞形状密切相关。预孔试样的应变变化更为复杂,甚至大于完整试样的应变值。虽然不同孔型的裂纹起始点不同,但试样的整个结构坍塌是由沿试样对角线方向的宏观剪切裂纹控制的,这些裂纹可以通过速度趋势箭头和接触力分布有效识别。最后,对预孔试样在静载和动载下的破坏模式进行了对比分析。
{"title":"Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole","authors":"Zhenyu Han, Kai Liu, Jinyin Ma, Diyuan Li","doi":"10.1007/s40789-024-00718-5","DOIUrl":"https://doi.org/10.1007/s40789-024-00718-5","url":null,"abstract":"<p>Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part I: Experimental results 复杂法向应力和剪切应力下煤的机械响应和断裂行为,第一部分:实验结果
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-17 DOI: 10.1007/s40789-024-00705-w
Z. Y. Song, W. G. Dang, Z. C. Bai, Y. Zhao, P. T. Wang, Z. Yang

This work presents experimental tests based on coal collected from a coal mine based underground water reservoir (CMUWR). The mechanical responses of dry and water-soaked coal samples under the complex normal and shear stresses under multi-amplitude and variable frequency is investigated. The experimental results reveal the effects of stress path, water soaking and frequency on deformation, energy dissipation, secant modulus and shear failure surface roughness. The experimental results show that when normal and shear stresses are applied simultaneously, there is a significant competitive relationship between them. On the dominant side, the strain rate will be significantly increased. The sample under a loading frequency of 0.2 Hz exhibits a longer fatigue life. During the cyclic shear test, the shear strain of the water-soaked sample is higher than that of the dry samples. The average roughness coefficient of failure surface exhibits an increasing pattern with increase in shear strength, the elevated roughness of a shear surface is advantageous in constraining shear displacements of specimens, thereby lowering the energy dissipation. This study can provide theoretical and practical implications for a long-term safety evaluation of CMUWR.

本研究介绍了基于煤矿地下水库(CMUWR)采集的煤炭进行的实验测试。研究了干燥和浸水煤样在多振幅、变频率的复杂法向应力和剪切应力作用下的力学响应。实验结果揭示了应力路径、水浸泡和频率对变形、能量耗散、正弦模量和剪切破坏表面粗糙度的影响。实验结果表明,当同时施加法向应力和剪切应力时,它们之间存在明显的竞争关系。在占优势的一方,应变率会明显增加。加载频率为 0.2 Hz 的样品具有更长的疲劳寿命。在循环剪切试验中,浸水样品的剪切应变高于干燥样品。破坏表面的平均粗糙度系数随剪切强度的增加而增加,剪切表面粗糙度的增加有利于限制试样的剪切位移,从而降低能量耗散。这项研究可为 CMUWR 的长期安全评估提供理论和实践意义。
{"title":"Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part I: Experimental results","authors":"Z. Y. Song, W. G. Dang, Z. C. Bai, Y. Zhao, P. T. Wang, Z. Yang","doi":"10.1007/s40789-024-00705-w","DOIUrl":"https://doi.org/10.1007/s40789-024-00705-w","url":null,"abstract":"<p>This work presents experimental tests based on coal collected from a coal mine based underground water reservoir (CMUWR). The mechanical responses of dry and water-soaked coal samples under the complex normal and shear stresses under multi-amplitude and variable frequency is investigated. The experimental results reveal the effects of stress path, water soaking and frequency on deformation, energy dissipation, secant modulus and shear failure surface roughness. The experimental results show that when normal and shear stresses are applied simultaneously, there is a significant competitive relationship between them. On the dominant side, the strain rate will be significantly increased. The sample under a loading frequency of 0.2 Hz exhibits a longer fatigue life. During the cyclic shear test, the shear strain of the water-soaked sample is higher than that of the dry samples. The average roughness coefficient of failure surface exhibits an increasing pattern with increase in shear strength, the elevated roughness of a shear surface is advantageous in constraining shear displacements of specimens, thereby lowering the energy dissipation. This study can provide theoretical and practical implications for a long-term safety evaluation of CMUWR.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":null,"pages":null},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Coal Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1