Valorization of lignocellulosic solid waste obtained from essential oil industry for bio-oil production and dye removal

IF 1.6 Q3 WATER RESOURCES Water Practice and Technology Pub Date : 2023-10-01 DOI:10.2166/wpt.2023.154
Sourodipto Modak, Priyanka Katiyar, Sanjeev Yadav, Annapurna Hans
{"title":"Valorization of lignocellulosic solid waste obtained from essential oil industry for bio-oil production and dye removal","authors":"Sourodipto Modak, Priyanka Katiyar, Sanjeev Yadav, Annapurna Hans","doi":"10.2166/wpt.2023.154","DOIUrl":null,"url":null,"abstract":"Abstract This research underscores the potential of utilizing carrot seed waste and its derived biochar as effective solutions for waste management and wastewater treatment applications. This waste is thoroughly characterized for its chemical, thermal, and morphological properties. It is found to be rich in carbon and cellulose, proved suitable for pyrolysis, yielding 25% biochar and 45% bio-oil, with the latter containing carboxylic acids and hydrocarbons. Biochar, characterized by a high surface area of around 300 m2/g, micro- and mesopores, and the presence of metal oxides, demonstrated outstanding adsorption properties. Biochar shows superior performance compared to raw carrot seed waste, mainly in the context of methylene blue dye removal, obtaining an impressive removal efficiency of 99%. Subsequently, optimization of pH, adsorbent dosage, dye concentration, and reaction temperature is carried out using biochar as the adsorbent to maximize dye removal and adsorption capacity, whereas adsorption kinetics follows pseudo-first-order kinetics.","PeriodicalId":23794,"journal":{"name":"Water Practice and Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Practice and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wpt.2023.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This research underscores the potential of utilizing carrot seed waste and its derived biochar as effective solutions for waste management and wastewater treatment applications. This waste is thoroughly characterized for its chemical, thermal, and morphological properties. It is found to be rich in carbon and cellulose, proved suitable for pyrolysis, yielding 25% biochar and 45% bio-oil, with the latter containing carboxylic acids and hydrocarbons. Biochar, characterized by a high surface area of around 300 m2/g, micro- and mesopores, and the presence of metal oxides, demonstrated outstanding adsorption properties. Biochar shows superior performance compared to raw carrot seed waste, mainly in the context of methylene blue dye removal, obtaining an impressive removal efficiency of 99%. Subsequently, optimization of pH, adsorbent dosage, dye concentration, and reaction temperature is carried out using biochar as the adsorbent to maximize dye removal and adsorption capacity, whereas adsorption kinetics follows pseudo-first-order kinetics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从精油工业中获得的木质纤维素固体废物的增值用于生物油生产和染料去除
本研究强调了利用胡萝卜种子废物及其衍生生物炭作为废物管理和废水处理应用的有效解决方案的潜力。这种废物的化学、热学和形态特性都得到了充分的表征。发现它富含碳和纤维素,证明适合热解,产25%的生物炭和45%的生物油,后者含有羧酸和碳氢化合物。生物炭具有约300 m2/g的高表面积、微孔和中孔以及金属氧化物的存在等特点,表现出优异的吸附性能。生物炭在去除亚甲基蓝染料方面表现出比胡萝卜籽废料更优越的性能,其去除效率高达99%。随后,以生物炭为吸附剂,对pH、吸附剂用量、染料浓度和反应温度进行了优化,以最大限度地提高染料的去除和吸附能力,而吸附动力学遵循准一级动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
6.20%
发文量
136
审稿时长
14 weeks
期刊最新文献
Hydro-geochemical characterisation and modelling of groundwater in Chikun Local Government Area of Kaduna state, Nigeria A methodology for temporal disaggregation of daily rain gauge data using satellite precipitation product for improved accuracy in hydrologic simulation ACWA: an AI-driven cyber-physical testbed for intelligent water systems Phosphorus removal from ore waste in aqueous solution with different mass of ore waste adsorbent from the Johor mine site Assessment of risks to the quality of water supplied in Bushenyi-Uganda using the water safety plan approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1