Multiple nitrogen sources for primary production inferred from δ13C and δ15N in the southern Sea of Japan

IF 3.9 2区 地球科学 Q1 ECOLOGY Biogeosciences Pub Date : 2023-09-13 DOI:10.5194/bg-20-3667-2023
Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, Yoichi Kogure
{"title":"Multiple nitrogen sources for primary production inferred from <i>δ</i><sup>13</sup>C and <i>δ</i><sup>15</sup>N in the southern Sea of Japan","authors":"Taketoshi Kodama, Atsushi Nishimoto, Ken-ichi Nakamura, Misato Nakae, Naoki Iguchi, Yosuke Igeta, Yoichi Kogure","doi":"10.5194/bg-20-3667-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Carbon and nitrogen dynamics in the Sea of Japan (SOJ) are rapidly changing. In this study, we investigated the carbon and nitrogen isotope ratios of particulate organic matter (δ13CPOM and δ15NPOM, respectively) at depths of ≤100 m in the southern part of the SOJ from 2016 to 2021. δ13CPOM and δ15NPOM exhibited multimodal distributions and were classified as belonging to four classes (I–IV) according to the Gaussian mixed model. A majority of the samples were classified as class II (n=441), with a mean ± standard deviation of δ13CPOM and δ15NPOM of -23.7±1.2 ‰ and 3.1 ± 1.2 ‰, respectively. Compared to class II, class I had significantly low δ15NPOM (-2.1±0.8 ‰, n=11), class III had low δ13CPOM (-27.1±1.0 ‰, n=21), and class IV had high δ13CPOM (-20.7±0.8 ‰, n=34). All the class I samples, whose δ15NPOM showed an outlier of total datasets, were collected in winter and had a comparable temperature and salinity originating in Japanese local rivers. The generalized linear model demonstrated that the temperature and chlorophyll-a concentration had positive effects on δ13CPOM, supporting the idea that the active photosynthesis and phytoplankton growth increased δ13CPOM. However, the fluctuation in δ15NPOM was attributed to the temperature and salinity rather than nitrate concentration, which suggested that the δ15N of source nitrogen for primary production is different among the water masses. These findings suggest that multiple nitrogen sources, including nitrates from the East China Sea, Kuroshio, and Japanese local rivers, contribute to the primary production in the SOJ.","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"43 1","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/bg-20-3667-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Carbon and nitrogen dynamics in the Sea of Japan (SOJ) are rapidly changing. In this study, we investigated the carbon and nitrogen isotope ratios of particulate organic matter (δ13CPOM and δ15NPOM, respectively) at depths of ≤100 m in the southern part of the SOJ from 2016 to 2021. δ13CPOM and δ15NPOM exhibited multimodal distributions and were classified as belonging to four classes (I–IV) according to the Gaussian mixed model. A majority of the samples were classified as class II (n=441), with a mean ± standard deviation of δ13CPOM and δ15NPOM of -23.7±1.2 ‰ and 3.1 ± 1.2 ‰, respectively. Compared to class II, class I had significantly low δ15NPOM (-2.1±0.8 ‰, n=11), class III had low δ13CPOM (-27.1±1.0 ‰, n=21), and class IV had high δ13CPOM (-20.7±0.8 ‰, n=34). All the class I samples, whose δ15NPOM showed an outlier of total datasets, were collected in winter and had a comparable temperature and salinity originating in Japanese local rivers. The generalized linear model demonstrated that the temperature and chlorophyll-a concentration had positive effects on δ13CPOM, supporting the idea that the active photosynthesis and phytoplankton growth increased δ13CPOM. However, the fluctuation in δ15NPOM was attributed to the temperature and salinity rather than nitrate concentration, which suggested that the δ15N of source nitrogen for primary production is different among the water masses. These findings suggest that multiple nitrogen sources, including nitrates from the East China Sea, Kuroshio, and Japanese local rivers, contribute to the primary production in the SOJ.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从日本海南部的δ13C和δ15N推断出初级生产的多重氮源
摘要日本海(SOJ)的碳氮动态正在迅速变化。本文对2016 - 2021年SOJ南部≤100 m深度颗粒有机质(δ13CPOM和δ15NPOM)碳氮同位素比值进行了研究。δ13CPOM和δ15NPOM呈现多模态分布,根据高斯混合模型可分为4类(I-IV)。大部分样本(n=441)被归为II类,δ13CPOM和δ15NPOM的平均±标准差分别为-23.7±1.2‰和3.1±1.2‰。与ⅱ类相比,ⅰ类δ15NPOM较低(-2.1±0.8‰,n=11),ⅲ类δ13CPOM较低(-27.1±1.0‰,n=21),ⅳ类δ13CPOM较高(-20.7±0.8‰,n=34)。所有I类样品的δ15NPOM值在所有数据集中都是异常值,它们是在冬季收集的,它们的温度和盐度与日本当地河流的温度和盐度相当。广义线性模型表明,温度和叶绿素a浓度对δ13CPOM有正影响,支持光合作用活跃和浮游植物生长增加δ13CPOM的观点。而δ15NPOM的波动主要受温度和盐度的影响,而非硝态氮浓度的影响,说明不同水团间初级生产源氮的δ15N存在差异。这些发现表明,包括东海、黑潮和日本当地河流的硝酸盐在内的多种氮源对SOJ的初级生产有贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeosciences
Biogeosciences 环境科学-地球科学综合
CiteScore
8.60
自引率
8.20%
发文量
258
审稿时长
4.2 months
期刊介绍: Biogeosciences (BG) is an international scientific journal dedicated to the publication and discussion of research articles, short communications and review papers on all aspects of the interactions between the biological, chemical and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual and modelling approaches are welcome.
期刊最新文献
Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas Root distributions predict shrub–steppe responses to precipitation intensity Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1