Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing‐Guang Lai, Qian Liu
Abstract. Volatile organic sulfur compounds (VSCs), including carbon disulfide (CS2), dimethyl sulfide (DMS), and carbonyl sulfide (COS), were surveyed in the seawater of the Bohai and Yellow seas and the overlying atmosphere during spring and summer of 2018 to understand the production and loss of VSCs and their influence factors. The concentration ranges of COS, DMS, and CS2 in the surface seawater were 0.14–0.42, 0.41–7.74, and 0.01–0.18 nmol L−1 during spring and 0.32–0.61, 1.31–18.12, and 0.01–0.65 nmol L−1 during summer, respectively. The COS concentrations exhibited positive correlation with dissolved organic carbon (DOC) concentrations in seawater during summer, which verified the photochemical production of COS from chromophoric dissolved organic matter (CDOM). High DMS concentrations occurred near the Yellow River, Laizhou Bay, and Yangtze River estuary, coinciding with high nitrate and chlorophyll (Chl) a concentrations due to river discharge during summer. The COS, DMS, and CS2 concentrations were the highest in the surface seawater and decreased with the depth. The mixing ratios of COS, DMS, and CS2 in the atmosphere were 255.9–620.2, 1.3–191.2, and 5.2–698.8 pptv during spring and 394.6–850.1, 10.3–464.3, and 15.3–672.7 pptv in summer, respectively. The ratios of mean oceanic concentrations and atmospheric mixing ratios for summer to spring in COS, DMS, and CS2 were 1.8, 3.1, 3.7 and 1.6, 4.6, 1.5, respectively. The ratios of the mean sea-to-air fluxes for summer to spring in COS, DMS, and CS2 were 1.2, 2.1, and 4.3. The sea-to-air fluxes of VSCs indicated that the marginal seas are important sources of VSCs in the atmosphere. The results support a better understanding of the contribution of VSCs in marginal seas.
{"title":"Spatial and seasonal variability in volatile organic sulfur compounds in seawater and the overlying atmosphere of the Bohai and Yellow seas","authors":"Juan Yu, Lei Yu, Zhen He, Gui-Peng Yang, Jing‐Guang Lai, Qian Liu","doi":"10.5194/bg-21-161-2024","DOIUrl":"https://doi.org/10.5194/bg-21-161-2024","url":null,"abstract":"Abstract. Volatile organic sulfur compounds (VSCs), including carbon disulfide (CS2), dimethyl sulfide (DMS), and carbonyl sulfide (COS), were surveyed in the seawater of the Bohai and Yellow seas and the overlying atmosphere during spring and summer of 2018 to understand the production and loss of VSCs and their influence factors. The concentration ranges of COS, DMS, and CS2 in the surface seawater were 0.14–0.42, 0.41–7.74, and 0.01–0.18 nmol L−1 during spring and 0.32–0.61, 1.31–18.12, and 0.01–0.65 nmol L−1 during summer, respectively. The COS concentrations exhibited positive correlation with dissolved organic carbon (DOC) concentrations in seawater during summer, which verified the photochemical production of COS from chromophoric dissolved organic matter (CDOM). High DMS concentrations occurred near the Yellow River, Laizhou Bay, and Yangtze River estuary, coinciding with high nitrate and chlorophyll (Chl) a concentrations due to river discharge during summer. The COS, DMS, and CS2 concentrations were the highest in the surface seawater and decreased with the depth. The mixing ratios of COS, DMS, and CS2 in the atmosphere were 255.9–620.2, 1.3–191.2, and 5.2–698.8 pptv during spring and 394.6–850.1, 10.3–464.3, and 15.3–672.7 pptv in summer, respectively. The ratios of mean oceanic concentrations and atmospheric mixing ratios for summer to spring in COS, DMS, and CS2 were 1.8, 3.1, 3.7 and 1.6, 4.6, 1.5, respectively. The ratios of the mean sea-to-air fluxes for summer to spring in COS, DMS, and CS2 were 1.2, 2.1, and 4.3. The sea-to-air fluxes of VSCs indicated that the marginal seas are important sources of VSCs in the atmosphere. The results support a better understanding of the contribution of VSCs in marginal seas.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"35 48","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, Karen H. Beard
Abstract. Precipitation events are becoming more intense around the world, changing the way water moves through soils and plants. Plant rooting strategies that sustain water uptake under these conditions are likely to become more abundant (e.g., shrub encroachment). Yet, it remains difficult to predict species responses to climate change because we typically do not know where active roots are located or how much water they absorb. Here, we applied a water tracer experiment to describe forb, grass, and shrub root distributions. These measurements were made in 8 m by 8 m field shelters with low or high precipitation intensity. We used tracer uptake data in a soil water flow model to estimate how much water respective plant root tissues absorb over time. In low-precipitation-intensity plots, deep shrub roots were estimated to absorb the most water (93 mm yr−1) and shrubs had the greatest aboveground cover (27 %). Grass root distributions were estimated to absorb an intermediate amount of water (80 mm yr−1) and grasses had intermediate aboveground cover (18 %). Forb root distributions were estimated to absorb the least water (79 mm yr−1) and had the least aboveground cover (12 %). In high-precipitation-intensity plots, shrub and forb root distributions changed in ways that increased their water uptake relative to grasses, predicting the increased aboveground growth of shrubs and forbs in these plots. In short, water uptake caused by different rooting distributions predicted plant aboveground cover. Our results suggest that detailed descriptions of active plant root distributions can predict plant growth responses to climate change in arid and semi-arid ecosystems.
{"title":"Root distributions predict shrub–steppe responses to precipitation intensity","authors":"A. Kulmatiski, Martin C. Holdrege, Cristina Chirvasă, Karen H. Beard","doi":"10.5194/bg-21-131-2024","DOIUrl":"https://doi.org/10.5194/bg-21-131-2024","url":null,"abstract":"Abstract. Precipitation events are becoming more intense around the world, changing the way water moves through soils and plants. Plant rooting strategies that sustain water uptake under these conditions are likely to become more abundant (e.g., shrub encroachment). Yet, it remains difficult to predict species responses to climate change because we typically do not know where active roots are located or how much water they absorb. Here, we applied a water tracer experiment to describe forb, grass, and shrub root distributions. These measurements were made in 8 m by 8 m field shelters with low or high precipitation intensity. We used tracer uptake data in a soil water flow model to estimate how much water respective plant root tissues absorb over time. In low-precipitation-intensity plots, deep shrub roots were estimated to absorb the most water (93 mm yr−1) and shrubs had the greatest aboveground cover (27 %). Grass root distributions were estimated to absorb an intermediate amount of water (80 mm yr−1) and grasses had intermediate aboveground cover (18 %). Forb root distributions were estimated to absorb the least water (79 mm yr−1) and had the least aboveground cover (12 %). In high-precipitation-intensity plots, shrub and forb root distributions changed in ways that increased their water uptake relative to grasses, predicting the increased aboveground growth of shrubs and forbs in these plots. In short, water uptake caused by different rooting distributions predicted plant aboveground cover. Our results suggest that detailed descriptions of active plant root distributions can predict plant growth responses to climate change in arid and semi-arid ecosystems.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"46 26","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139448233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas D. Hessilt, B. Rogers, R. Scholten, S. Potter, Thomas A. J. Janssen, S. Veraverbeke
Abstract. The snow cover extent across the Northern Hemisphere has diminished, while the number of lightning ignitions and amount of burned area have increased over the last 5 decades with accelerated warming. However, the effects of earlier snow disappearance on fire are largely unknown. Here, we assessed the influence of snow disappearance timing on fire ignitions across 16 ecoregions of boreal North America. We found spatially divergent trends in earlier (later) snow disappearance, which led to an increasing (decreasing) number of ignitions for the northwestern (southeastern) ecoregions between 1980 and 2019. Similar northwest–southeast divergent trends were observed in the changing length of the snow-free season and correspondingly the fire season length. We observed increases (decreases) over northwestern (southeastern) boreal North America which coincided with a continental dipole in air temperature changes between 2001 and 2019. Earlier snow disappearance induced earlier ignitions of between 0.22 and 1.43 d earlier per day of earlier snow disappearance in all ecoregions between 2001 and 2019. Early-season ignitions (defined by the 20 % earliest fire ignitions per year) developed into significantly larger fires in 8 out of 16 ecoregions, being on average 77 % larger across the whole domain. Using a piecewise structural equation model, we found that earlier snow disappearance is a good direct proxy for earlier ignitions but may also result in a cascade of effects from earlier desiccation of fuels and favorable weather conditions that lead to earlier ignitions. This indicates that snow disappearance timing is an important trigger of land–atmosphere dynamics. Future warming and consequent changes in snow disappearance timing may contribute to further increases in western boreal fires, while it remains unclear how the number and timing of fire ignitions in eastern boreal North America may change with climate change.
{"title":"Geographically divergent trends in snow disappearance timing and fire ignitions across boreal North America","authors":"Thomas D. Hessilt, B. Rogers, R. Scholten, S. Potter, Thomas A. J. Janssen, S. Veraverbeke","doi":"10.5194/bg-21-109-2024","DOIUrl":"https://doi.org/10.5194/bg-21-109-2024","url":null,"abstract":"Abstract. The snow cover extent across the Northern Hemisphere has diminished, while the number of lightning ignitions and amount of burned area have increased over the last 5 decades with accelerated warming. However, the effects of earlier snow disappearance on fire are largely unknown. Here, we assessed the influence of snow disappearance timing on fire ignitions across 16 ecoregions of boreal North America. We found spatially divergent trends in earlier (later) snow disappearance, which led to an increasing (decreasing) number of ignitions for the northwestern (southeastern) ecoregions between 1980 and 2019. Similar northwest–southeast divergent trends were observed in the changing length of the snow-free season and correspondingly the fire season length. We observed increases (decreases) over northwestern (southeastern) boreal North America which coincided with a continental dipole in air temperature changes between 2001 and 2019. Earlier snow disappearance induced earlier ignitions of between 0.22 and 1.43 d earlier per day of earlier snow disappearance in all ecoregions between 2001 and 2019. Early-season ignitions (defined by the 20 % earliest fire ignitions per year) developed into significantly larger fires in 8 out of 16 ecoregions, being on average 77 % larger across the whole domain. Using a piecewise structural equation model, we found that earlier snow disappearance is a good direct proxy for earlier ignitions but may also result in a cascade of effects from earlier desiccation of fuels and favorable weather conditions that lead to earlier ignitions. This indicates that snow disappearance timing is an important trigger of land–atmosphere dynamics. Future warming and consequent changes in snow disappearance timing may contribute to further increases in western boreal fires, while it remains unclear how the number and timing of fire ignitions in eastern boreal North America may change with climate change.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"14 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mara Cipriani, C. Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, V. Bracchi, Fabio Bruno, Gabriele Costa, R. Dominici, A. Gallo, M. Muzzupappa, A. Rosso, R. Sanfilippo, F. Sciuto, G. Vespasiano, Adriano Guido
Abstract. The coralligenous build-ups located on the Mediterranean shelf in front of Marzamemi (SE Sicily, Italy) represent useful natural examples to use in studying the relationship between skeletal organisms and non-skeletal components in marine bioconstructions. Coralligenous build-ups are formed in open marine systems, and their comparison with coeval bioconstructions (biostalactites) of confined environments, like submarine caves, allows depicting the complex interactions between metazoans and microbial communities in the formations of recent bioconstructions in different Mediterranean settings. In this study, two coralligenous build-ups were characterized in terms of organisms and sediments involved in their formation. The framework mainly consists of coralline algae and subordinate bryozoans and serpulids. Sponges affect the general morphology of the bioconstructions both interacting with skeletonized organisms and through bioerosion activity. The micrite or microcrystalline calcite is present in minor amounts compared to other components that form the build-ups and consists of two types: autochthonous (in situ) and allochthonous (detrital). Fine autochthonous micrite mineralized directly inside the framework cavities and shows aphanitic or peloidal fabric, produced by organomineralization processes of soft sponge tissues and microbial metabolic activity, respectively. The detrital micrite occurring inside cavities derives from external sources or erosion processes of the bioconstructions themselves. This component has been classified as organic or inorganic based on the organic matter contents deduced by UV epifluorescence. A great quantity of sponges live in cavities of the coralligenous build-ups and compete with carbonatogenic bacteria for the same cryptic spaces, limiting the production of microbialites. The sharing of a similar relationship between sponges and microbial communities by coralligenous concretion and biotic crusts of particular submarine caves suggests that this competition is not habitat-specific. On the contrary, it may develop in a range of environmental settings, from open to cryptic systems, and could be used to clarify the role of metazoans vs. microbialites in palaeoecological reconstructions.
{"title":"Origin and role of non-skeletal carbonate in coralligenous build-ups: new geobiological perspectives in biomineralization processes","authors":"Mara Cipriani, C. Apollaro, Daniela Basso, Pietro Bazzicalupo, Marco Bertolino, V. Bracchi, Fabio Bruno, Gabriele Costa, R. Dominici, A. Gallo, M. Muzzupappa, A. Rosso, R. Sanfilippo, F. Sciuto, G. Vespasiano, Adriano Guido","doi":"10.5194/bg-21-49-2024","DOIUrl":"https://doi.org/10.5194/bg-21-49-2024","url":null,"abstract":"Abstract. The coralligenous build-ups located on the Mediterranean shelf in front of Marzamemi (SE Sicily, Italy) represent useful natural examples to use in studying the relationship between skeletal organisms and non-skeletal components in marine bioconstructions. Coralligenous build-ups are formed in open marine systems, and their comparison with coeval bioconstructions (biostalactites) of confined environments, like submarine caves, allows depicting the complex interactions between metazoans and microbial communities in the formations of recent bioconstructions in different Mediterranean settings. In this study, two coralligenous build-ups were characterized in terms of organisms and sediments involved in their formation. The framework mainly consists of coralline algae and subordinate bryozoans and serpulids. Sponges affect the general morphology of the bioconstructions both interacting with skeletonized organisms and through bioerosion activity. The micrite or microcrystalline calcite is present in minor amounts compared to other components that form the build-ups and consists of two types: autochthonous (in situ) and allochthonous (detrital). Fine autochthonous micrite mineralized directly inside the framework cavities and shows aphanitic or peloidal fabric, produced by organomineralization processes of soft sponge tissues and microbial metabolic activity, respectively. The detrital micrite occurring inside cavities derives from external sources or erosion processes of the bioconstructions themselves. This component has been classified as organic or inorganic based on the organic matter contents deduced by UV epifluorescence. A great quantity of sponges live in cavities of the coralligenous build-ups and compete with carbonatogenic bacteria for the same cryptic spaces, limiting the production of microbialites. The sharing of a similar relationship between sponges and microbial communities by coralligenous concretion and biotic crusts of particular submarine caves suggests that this competition is not habitat-specific. On the contrary, it may develop in a range of environmental settings, from open to cryptic systems, and could be used to clarify the role of metazoans vs. microbialites in palaeoecological reconstructions.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"12 4","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139451588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emilia Chiapponi, S. Silvestri, Denis Zannoni, M. Antonellini, B. Giambastiani
Abstract. Coastal wetlands play a fundamental role in mitigating climate change thanks to their ability to store large amounts of organic carbon in the soil. However, degraded freshwater wetlands are also known to be the first natural emitter of methane (CH4). Salinity is known to inhibit CH4 production, but its effect in brackish ecosystems is still poorly understood. This study provides a contribution to understanding how environmental variables may affect greenhouse gas (GHG) emissions in coastal temperate wetlands. We present the results of over 1 year of measurements performed in four wetlands located along a salinity gradient on the northeast Adriatic coast near Ravenna, Italy. Soil properties were determined by coring soil samples, while carbon dioxide (CO2) and CH4 fluxes from soils and standing waters were monitored monthly by a portable gas flux meter. Additionally, water levels and surface and groundwater physical–chemical parameters (temperature, pH, electrical conductivity, and sulfate concentrations of water) were monitored monthly by multiparametric probes. We observed a substantial reduction in CH4 emissions when water depth exceeded the critical threshold of 50 cm. Regardless of the water salinity value, the mean CH4 flux was 5.04 gm-2d-1 in freshwater systems and 12.27 gm-2d-1 in brackish ones. In contrast, when water depth was shallower than 50 cm, CH4 fluxes reached an average of 196.98 gm-2d-1 in freshwater systems, while non-significant results are available for brackish/saline waters. Results obtained for CO2 fluxes showed the same behavior described for CH4 fluxes, even though they were statistically non-significant. Temperature and irradiance strongly influenced CH4 emissions from water and soil, resulting in higher rates during summer and spring.
{"title":"Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions","authors":"Emilia Chiapponi, S. Silvestri, Denis Zannoni, M. Antonellini, B. Giambastiani","doi":"10.5194/bg-21-73-2024","DOIUrl":"https://doi.org/10.5194/bg-21-73-2024","url":null,"abstract":"Abstract. Coastal wetlands play a fundamental role in mitigating climate change thanks to their ability to store large amounts of organic carbon in the soil. However, degraded freshwater wetlands are also known to be the first natural emitter of methane (CH4). Salinity is known to inhibit CH4 production, but its effect in brackish ecosystems is still poorly understood. This study provides a contribution to understanding how environmental variables may affect greenhouse gas (GHG) emissions in coastal temperate wetlands. We present the results of over 1 year of measurements performed in four wetlands located along a salinity gradient on the northeast Adriatic coast near Ravenna, Italy. Soil properties were determined by coring soil samples, while carbon dioxide (CO2) and CH4 fluxes from soils and standing waters were monitored monthly by a portable gas flux meter. Additionally, water levels and surface and groundwater physical–chemical parameters (temperature, pH, electrical conductivity, and sulfate concentrations of water) were monitored monthly by multiparametric probes. We observed a substantial reduction in CH4 emissions when water depth exceeded the critical threshold of 50 cm. Regardless of the water salinity value, the mean CH4 flux was 5.04 gm-2d-1 in freshwater systems and 12.27 gm-2d-1 in brackish ones. In contrast, when water depth was shallower than 50 cm, CH4 fluxes reached an average of 196.98 gm-2d-1 in freshwater systems, while non-significant results are available for brackish/saline waters. Results obtained for CO2 fluxes showed the same behavior described for CH4 fluxes, even though they were statistically non-significant. Temperature and irradiance strongly influenced CH4 emissions from water and soil, resulting in higher rates during summer and spring.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"106 25","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas A. Davidson, Martin Søndergaard, J. Audet, E. Levi, Chiara Esposito, Tuba Bucak, Anders Nielsen
Abstract. Shallow lakes and ponds undergo frequent temporary thermal stratification. How this affects greenhouse gas (GHG) emissions is moot, with both increased and reduced GHG emissions hypothesised. Here, weekly estimations of GHG emissions, over the growing season from May to September, were combined with temperature and oxygen profiles of an 11 ha temperate shallow lake to investigate how thermal stratification shapes GHG emissions. There were three main stratification periods with profound anoxia occurring in the bottom waters upon isolation from the atmosphere. Average diffusive emissions of methane (CH4) and nitrous oxide (N2O) were larger and more variable in the stratified phase, whereas carbon dioxide (CO2) was on average lower, though these differences were not statistically significant. In contrast, there was a significant order of magnitude increase in CH4 ebullition in the stratified phase. Furthermore, at the end of the period of stratification, there was a large efflux of CH4 and CO2 as the lake mixed. Two relatively isolated turnover events were estimated to have released the majority of the CH4 emitted between May and September. These results demonstrate how stratification patterns can shape GHG emissions and highlight the role of turnover emissions and the need for high-frequency measurements of GHG emissions, which are required to accurately characterise emissions, particularly from temporarily stratifying lakes.
{"title":"Temporary stratification promotes large greenhouse gas emissions in a shallow eutrophic lake","authors":"Thomas A. Davidson, Martin Søndergaard, J. Audet, E. Levi, Chiara Esposito, Tuba Bucak, Anders Nielsen","doi":"10.5194/bg-21-93-2024","DOIUrl":"https://doi.org/10.5194/bg-21-93-2024","url":null,"abstract":"Abstract. Shallow lakes and ponds undergo frequent temporary thermal stratification. How this affects greenhouse gas (GHG) emissions is moot, with both increased and reduced GHG emissions hypothesised. Here, weekly estimations of GHG emissions, over the growing season from May to September, were combined with temperature and oxygen profiles of an 11 ha temperate shallow lake to investigate how thermal stratification shapes GHG emissions. There were three main stratification periods with profound anoxia occurring in the bottom waters upon isolation from the atmosphere. Average diffusive emissions of methane (CH4) and nitrous oxide (N2O) were larger and more variable in the stratified phase, whereas carbon dioxide (CO2) was on average lower, though these differences were not statistically significant. In contrast, there was a significant order of magnitude increase in CH4 ebullition in the stratified phase. Furthermore, at the end of the period of stratification, there was a large efflux of CH4 and CO2 as the lake mixed. Two relatively isolated turnover events were estimated to have released the majority of the CH4 emitted between May and September. These results demonstrate how stratification patterns can shape GHG emissions and highlight the role of turnover emissions and the need for high-frequency measurements of GHG emissions, which are required to accurately characterise emissions, particularly from temporarily stratifying lakes.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"11 10","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, Kaiyong Wang
Abstract. Soil salinity mediates microorganisms and soil processes, like soil organic carbon (SOC) cycling. Yet, how soil salinity affects SOC mineralization via shaping bacterial community diversity and composition remains elusive. Therefore, soils were sampled along a salt gradient (salinity at 0.25 %, 0.58 %, 0.75 %, 1.00 %, and 2.64 %) and incubated for 90 d to investigate (i) SOC mineralization (i.e., soil priming effects induced by cottonseed meal, as substrate) and (ii) the responsible bacteria community by using high-throughput sequencing and natural abundance of 13C isotopes (to partition cottonseed-meal-derived CO2 and soil-derived CO2). We observed a negative priming effect during the first 28 d of incubation that turned to a positive priming effect after day 56. Negative priming at the early stage might be due to the preferential utilization of cottonseed meal. The followed positive priming decreased with the increase in salinity, which might be caused by the decreased α diversity of microbial communities in soil with high salinity. Specifically, soil pH and electrical conductivity (EC) along the salinity gradient were the dominant variables modulating the structure of the microbial community and consequently SOC priming (estimated by distance-based multivariate analysis and path analysis). By adopting two-way orthogonal projections to latent structures (O2PLS), priming effects were linked with specific microbial taxa; e.g., Proteobacteria (Luteimonas, Hoeflea, and Stenotrophomonas) were the core microbial genera that were attributed to the substrate-induced priming effects. Here, we highlight that the increase in salinity reduced the diversity of the microbial community and shifted dominant microorganisms (Actinobacteria and Proteobacteria: Luteimonas, Hoeflea, and Stenotrophomonas) that determined SOC priming effects, which provides a theoretical basis for understanding SOC dynamics and microbial drivers under the salinity gradient.
{"title":"Soil priming effects and involved microbial community along salt gradients","authors":"Haoli Zhang, Doudou Chang, Zhifeng Zhu, Chunmei Meng, Kaiyong Wang","doi":"10.5194/bg-21-1-2024","DOIUrl":"https://doi.org/10.5194/bg-21-1-2024","url":null,"abstract":"Abstract. Soil salinity mediates microorganisms and soil processes, like soil organic carbon (SOC) cycling. Yet, how soil salinity affects SOC mineralization via shaping bacterial community diversity and composition remains elusive. Therefore, soils were sampled along a salt gradient (salinity at 0.25 %, 0.58 %, 0.75 %, 1.00 %, and 2.64 %) and incubated for 90 d to investigate (i) SOC mineralization (i.e., soil priming effects induced by cottonseed meal, as substrate) and (ii) the responsible bacteria community by using high-throughput sequencing and natural abundance of 13C isotopes (to partition cottonseed-meal-derived CO2 and soil-derived CO2). We observed a negative priming effect during the first 28 d of incubation that turned to a positive priming effect after day 56. Negative priming at the early stage might be due to the preferential utilization of cottonseed meal. The followed positive priming decreased with the increase in salinity, which might be caused by the decreased α diversity of microbial communities in soil with high salinity. Specifically, soil pH and electrical conductivity (EC) along the salinity gradient were the dominant variables modulating the structure of the microbial community and consequently SOC priming (estimated by distance-based multivariate analysis and path analysis). By adopting two-way orthogonal projections to latent structures (O2PLS), priming effects were linked with specific microbial taxa; e.g., Proteobacteria (Luteimonas, Hoeflea, and Stenotrophomonas) were the core microbial genera that were attributed to the substrate-induced priming effects. Here, we highlight that the increase in salinity reduced the diversity of the microbial community and shifted dominant microorganisms (Actinobacteria and Proteobacteria: Luteimonas, Hoeflea, and Stenotrophomonas) that determined SOC priming effects, which provides a theoretical basis for understanding SOC dynamics and microbial drivers under the salinity gradient.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"123 3","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robert W. Izett, K. Fennel, A. Stoer, D. Nicholson
Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.
{"title":"Reviews and syntheses: expanding the global coverage of gross primary production and net community production measurements using Biogeochemical-Argo floats","authors":"Robert W. Izett, K. Fennel, A. Stoer, D. Nicholson","doi":"10.5194/bg-21-13-2024","DOIUrl":"https://doi.org/10.5194/bg-21-13-2024","url":null,"abstract":"Abstract. This paper provides an overview and demonstration of emerging float-based methods for quantifying gross primary production (GPP) and net community production (NCP) using Biogeochemical-Argo (BGC-Argo) float data. Recent publications have described GPP methods that are based on the detection of diurnal oscillations in upper-ocean oxygen or particulate organic carbon concentrations using single profilers or a composite of BGC-Argo floats. NCP methods rely on budget calculations to partition observed tracer variations into physical or biological processes occurring over timescales greater than 1 d. Presently, multi-year NCP time series are feasible at near-weekly resolution, using consecutive or simultaneous float deployments at local scales. Results, however, are sensitive to the choice of tracer used in the budget calculations and uncertainties in the budget parameterizations employed across different NCP approaches. Decadal, basin-wide GPP calculations are currently achievable using data compiled from the entire BGC-Argo array, but finer spatial and temporal resolution requires more float deployments to construct diurnal tracer curves. A projected, global BGC-Argo array of 1000 floats should be sufficient to attain annual GPP estimates at 10∘ latitudinal resolution if floats profile at off-integer intervals (e.g., 5.2 or 10.2 d). Addressing the current limitations of float-based methods should enable enhanced spatial and temporal coverage of marine GPP and NCP measurements, facilitating global-scale determinations of the carbon export potential, training of satellite primary production algorithms, and evaluations of biogeochemical numerical models. This paper aims to facilitate broader uptake of float GPP and NCP methods, as singular or combined tools, by the oceanographic community and to promote their continued development.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"14 7","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139452237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joséphine Hazera, D. Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, T. Chevallier
Abstract. Quantifying both soil organic carbon (SOC) and soil inorganic carbon (SIC) is essential to understand carbon (C) dynamics and to assess the atmospheric C sequestration potential in calcareous soils. The procedures usually used to quantify SOC and SIC involve pretreatments (decarbonation, carbonate removal) and calculations of the difference between C contents estimated by elemental analysis on raw and pretreated aliquots. These procedures lead to analytical bias associated with pretreatments, measurement deviations associated with sample heterogeneity, and cumulative errors associated with calculations. The Rock-Eval® analysis is a ramped thermal analysis that has been used in soil sciences since the 2000s, consisting of pyrolysis of the sample followed by oxidation of the residue. A single Rock-Eval® analysis on non-pretreated aliquots provides two parameters estimating the organic (TOC) and inorganic (MinC) C contents of the samples. Nevertheless, the Rock-Eval® protocol was standardised in the 1970s by IFP Energies Nouvelles for studying oil-bearing rocks and is thus not perfectly suited for soil study. Previous studies have suggested statistical corrections of the standard parameters to improve their estimations of C contents assessed by elemental analysis, but only a few of them have focused on the estimation of inorganic C content using the MinC parameter. Moreover, none of them have suggested adjustments to the standard Rock-Eval® protocol. This study proposes to adapt this protocol to optimise SOC and SIC quantifications in soil samples. Comparisons between SOC and SIC quantifications by elemental analysis and by Rock-Eval®, with and without statistical corrections of the standard TOC and MinC parameters, were carried out on 30 agricultural topsoils with a wide range of SOC and SIC contents. The results show that the standard Rock-Eval® protocol can properly estimate SOC contents once the TOC parameter is corrected. However, it cannot achieve a complete thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to complete the thermal breakdown of SIC before the end of the analysis. This work is a methodological step to measure SOC and SIC contents in a single analytical run on a non-pretreated aliquot. More work is needed (i) on a wider range of soil samples with differing land use and other forms of carbonate mineral and sampling depths and (ii) to avoid the use of statistical corrections of the TOC and MinC parameters.
摘要。量化土壤有机碳(SOC)和土壤无机碳(SIC)对于了解碳(C)动态和评估石灰性土壤固碳潜力至关重要。通常用于量化 SOC 和 SIC 的程序包括预处理(脱碳、去除碳酸盐)以及计算原始等分样品和预处理等分样品上元素分析估算的碳含量之间的差异。这些程序会导致与预处理相关的分析偏差、与样品异质性相关的测量偏差以及与计算相关的累积误差。Rock-Eval® 分析是一种斜坡式热分析,自 2000 年代以来一直用于土壤科学,包括样品热解和残留物氧化。对未经预处理的等分样品进行一次 Rock-Eval® 分析,可获得两个参数,分别估算样品中的有机碳含量(TOC)和无机碳含量(MinC)。不过,Rock-Eval® 方案是 IFP Energies Nouvelles 在 20 世纪 70 年代为研究含油岩石而标准化的,因此并不完全适用于土壤研究。以往的研究建议对标准参数进行统计修正,以改进对元素分析评估的碳含量的估算,但只有少数研究侧重于使用 MinC 参数估算无机碳含量。此外,他们都没有建议对标准的 Rock-Eval® 方案进行调整。本研究建议对该方案进行调整,以优化土壤样本中 SOC 和 SIC 的定量。在 30 个 SOC 和 SIC 含量范围广泛的农业表层土壤中,对元素分析法和 Rock-Eval® 法进行了 SOC 和 SIC 定量比较,并对标准 TOC 和 MinC 参数进行了统计修正。结果表明,一旦修正了 TOC 参数,标准 Rock-Eval® 协议就能正确估算 SOC 含量。但是,它无法对大于 4 毫克的 SIC 进行完全的热分解,从而导致 MinC 参数低估了高 SIC 含量,即使对其进行修正后也是如此。因此,最终氧化等温线延长至 7 分钟,以便在分析结束前完成 SIC 的热分解。这项工作在方法上迈出了一步,可以在一次分析运行中对未经预处理的等分样品进行 SOC 和 SIC 含量测量。还需要做更多的工作:(i) 在更广泛的土壤样本上进行,这些样本具有不同的土地利用和其他形式的碳酸盐矿物,以及采样深度;(ii) 避免使用 TOC 和 MinC 参数的统计校正。
{"title":"Adjustments to the Rock-Eval® thermal analysis for soil organic and inorganic carbon quantification","authors":"Joséphine Hazera, D. Sebag, Isabelle Kowalewski, Eric Verrecchia, Herman Ravelojaona, T. Chevallier","doi":"10.5194/bg-20-5229-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5229-2023","url":null,"abstract":"Abstract. Quantifying both soil organic carbon (SOC) and soil inorganic carbon (SIC) is essential to understand carbon (C) dynamics and to assess the atmospheric C sequestration potential in calcareous soils. The procedures usually used to quantify SOC and SIC involve pretreatments (decarbonation, carbonate removal) and calculations of the difference between C contents estimated by elemental analysis on raw and pretreated aliquots. These procedures lead to analytical bias associated with pretreatments, measurement deviations associated with sample heterogeneity, and cumulative errors associated with calculations. The Rock-Eval® analysis is a ramped thermal analysis that has been used in soil sciences since the 2000s, consisting of pyrolysis of the sample followed by oxidation of the residue. A single Rock-Eval® analysis on non-pretreated aliquots provides two parameters estimating the organic (TOC) and inorganic (MinC) C contents of the samples. Nevertheless, the Rock-Eval® protocol was standardised in the 1970s by IFP Energies Nouvelles for studying oil-bearing rocks and is thus not perfectly suited for soil study. Previous studies have suggested statistical corrections of the standard parameters to improve their estimations of C contents assessed by elemental analysis, but only a few of them have focused on the estimation of inorganic C content using the MinC parameter. Moreover, none of them have suggested adjustments to the standard Rock-Eval® protocol. This study proposes to adapt this protocol to optimise SOC and SIC quantifications in soil samples. Comparisons between SOC and SIC quantifications by elemental analysis and by Rock-Eval®, with and without statistical corrections of the standard TOC and MinC parameters, were carried out on 30 agricultural topsoils with a wide range of SOC and SIC contents. The results show that the standard Rock-Eval® protocol can properly estimate SOC contents once the TOC parameter is corrected. However, it cannot achieve a complete thermal breakdown of SIC amounts > 4 mg, leading to an underestimation of high SIC contents by the MinC parameter, even after correcting for this. Thus, the final oxidation isotherm is extended to 7 min to complete the thermal breakdown of SIC before the end of the analysis. This work is a methodological step to measure SOC and SIC contents in a single analytical run on a non-pretreated aliquot. More work is needed (i) on a wider range of soil samples with differing land use and other forms of carbonate mineral and sampling depths and (ii) to avoid the use of statistical corrections of the TOC and MinC parameters.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"10 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138945019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Thaler, G. Paris, M. Dellinger, Delphine Dissard, S. Berland, A. Marie, Amandine Labat, A. Bartolini
Abstract. Marine sediments can be used to reconstruct the evolution of seawater [SO42-] and δ34S over time, two key parameters that contribute to refine our understanding of the sulfur cycle and thus of Earth's redox state. δ34S evolution can be measured from carbonates, barites and sulfate evaporites. [SO42-] variations can be reconstructed using fluid inclusions in halites, a method that only allows a low-resolution record. Reconstruction of the past sulfur cycle could be improved if carbonates allowed the tracking of both seawater δ34S and [SO42-] variations in a sole, continuous sedimentary repository. However, most primary carbonates formed in the ocean are biogenic, and organisms tend to overprint the geochemical signatures of their carbonates through a combination of processes often collectively referred to as vital effects. Hence, calibrations are needed to allow seawater δ34S and [SO42-] reconstructions based on biogenic carbonates. Because foraminifera are important marine calcifiers, we opted to focus on calcite synthesized by individuals of rosalinid benthic foraminifera cultured in the laboratory under controlled conditions, with varying seawater [SO42-] (ranging from 0 to 180 mM). Our experimental design allowed us to obtain foraminiferal asexual reproduction over several generations. We measured bulk carbonate-associated sulfate (CAS) content and sulfur isotopic composition (δ34SCAS) on samples of tens to hundreds of specimens from a selection of culture media, where [SO42-] varied from 5 to 60 mM. Increasing or decreasing [SO42-] with respect to modern-day seawater concentration (28 mM) impacted foraminiferal population size dynamics and the total amount of bioprecipitated carbonate. Foraminiferal CAS concentration increased proportionally with [SO42-] concentration from 5 mM up to 28 mM and then showed a plateau from 28 to 60 mM. The existence of a threshold at 28 mM is interpreted as the result of a control on the precipitation fluid chemistry that foraminifera exert on the carbonate precipitation loci. However, at high seawater sulfate concentrations (> 40 mM) the formation of sulfate complexes with other cations may partially contribute to the non-linearity of the CAS concentration in foraminiferal tests at high increases in [SO42-]. Yet, despite the significant effect of seawater [SO42-] on foraminiferal reproduction and on CAS incorporation, the isotopic fractionation between CAS and seawater remains stable through varying seawater [SO42-]. Altogether, these results illustrate that CAS in biogenic calcite could constitute a good proxy for both seawater [SO42-] and δ34S and suggests that sulfate likely plays a role in foraminiferal biomineralization and biological activity.
{"title":"Impact of seawater sulfate concentration on sulfur concentration and isotopic composition in calcite of two cultured benthic foraminifera","authors":"C. Thaler, G. Paris, M. Dellinger, Delphine Dissard, S. Berland, A. Marie, Amandine Labat, A. Bartolini","doi":"10.5194/bg-20-5177-2023","DOIUrl":"https://doi.org/10.5194/bg-20-5177-2023","url":null,"abstract":"Abstract. Marine sediments can be used to reconstruct the evolution of seawater [SO42-] and δ34S over time, two key parameters that contribute to refine our understanding of the sulfur cycle and thus of Earth's redox state. δ34S evolution can be measured from carbonates, barites and sulfate evaporites. [SO42-] variations can be reconstructed using fluid inclusions in halites, a method that only allows a low-resolution record. Reconstruction of the past sulfur cycle could be improved if carbonates allowed the tracking of both seawater δ34S and [SO42-] variations in a sole, continuous sedimentary repository. However, most primary carbonates formed in the ocean are biogenic, and organisms tend to overprint the geochemical signatures of their carbonates through a combination of processes often collectively referred to as vital effects. Hence, calibrations are needed to allow seawater δ34S and [SO42-] reconstructions based on biogenic carbonates. Because foraminifera are important marine calcifiers, we opted to focus on calcite synthesized by individuals of rosalinid benthic foraminifera cultured in the laboratory under controlled conditions, with varying seawater [SO42-] (ranging from 0 to 180 mM). Our experimental design allowed us to obtain foraminiferal asexual reproduction over several generations. We measured bulk carbonate-associated sulfate (CAS) content and sulfur isotopic composition (δ34SCAS) on samples of tens to hundreds of specimens from a selection of culture media, where [SO42-] varied from 5 to 60 mM. Increasing or decreasing [SO42-] with respect to modern-day seawater concentration (28 mM) impacted foraminiferal population size dynamics and the total amount of bioprecipitated carbonate. Foraminiferal CAS concentration increased proportionally with [SO42-] concentration from 5 mM up to 28 mM and then showed a plateau from 28 to 60 mM. The existence of a threshold at 28 mM is interpreted as the result of a control on the precipitation fluid chemistry that foraminifera exert on the carbonate precipitation loci. However, at high seawater sulfate concentrations (> 40 mM) the formation of sulfate complexes with other cations may partially contribute to the non-linearity of the CAS concentration in foraminiferal tests at high increases in [SO42-]. Yet, despite the significant effect of seawater [SO42-] on foraminiferal reproduction and on CAS incorporation, the isotopic fractionation between CAS and seawater remains stable through varying seawater [SO42-]. Altogether, these results illustrate that CAS in biogenic calcite could constitute a good proxy for both seawater [SO42-] and δ34S and suggests that sulfate likely plays a role in foraminiferal biomineralization and biological activity.\u0000","PeriodicalId":8899,"journal":{"name":"Biogeosciences","volume":"58 11","pages":""},"PeriodicalIF":4.9,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138949643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}