Soliton approximation in continuum models of leader-follower behavior

F. Terragni, W. D. Martinson, M. Carretero, P. K. Maini, L. L. Bonilla
{"title":"Soliton approximation in continuum models of leader-follower behavior","authors":"F. Terragni, W. D. Martinson, M. Carretero, P. K. Maini, L. L. Bonilla","doi":"10.1103/physreve.108.054407","DOIUrl":null,"url":null,"abstract":"Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many length and time scales and can be described by discrete models that track individuals or by continuum models involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region releasing the growth factor. The mathematical techniques used here thus identify common features of discrete and continuum approaches and provide insight into general biological mechanisms governing their collective dynamics.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"13 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreve.108.054407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex biological processes involve collective behavior of entities (bacteria, cells, animals) over many length and time scales and can be described by discrete models that track individuals or by continuum models involving densities and fields. We consider hybrid stochastic agent-based models of branching morphogenesis and angiogenesis (new blood vessel creation from preexisting vasculature), which treat cells as individuals that are guided by underlying continuous chemical and/or mechanical fields. In these descriptions, leader (tip) cells emerge from existing branches and follower (stalk) cells build the new sprout in their wake. Vessel branching and fusion (anastomosis) occur as a result of tip and stalk cell dynamics. Coarse graining these hybrid models in appropriate limits produces continuum partial differential equations (PDEs) for endothelial cell densities that are more analytically tractable. While these models differ in nonlinearity, they produce similar equations at leading order when chemotaxis is dominant. We analyze this leading order system in a simple quasi-one-dimensional geometry and show that the numerical solution of the leading order PDE is well described by a soliton wave that evolves from vessel to source. This wave is an attractor for intermediate times until it arrives at the hypoxic region releasing the growth factor. The mathematical techniques used here thus identify common features of discrete and continuum approaches and provide insight into general biological mechanisms governing their collective dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
领导-追随者行为连续模型中的孤子近似
复杂的生物过程涉及实体(细菌、细胞、动物)在许多长度和时间尺度上的集体行为,可以通过跟踪个体的离散模型或涉及密度和场的连续模型来描述。我们考虑了分支形态发生和血管生成(从先前存在的血管生成新血管)的混合随机代理模型,该模型将细胞视为个体,由潜在的连续化学和/或机械场引导。在这些描述中,领导细胞(尖端)从现有的分支中产生,跟随细胞(柄)在它们的尾迹中建立新的芽。血管分支和融合(吻合)是尖端和柄细胞动力学的结果。粗粒化这些混合模型在适当的限制下产生内皮细胞密度的连续偏微分方程(PDEs),更易于分析处理。虽然这些模型在非线性上有所不同,但当趋化性占主导地位时,它们在主导阶上产生相似的方程。我们在一个简单的准一维几何结构中分析了这个先导系统,并证明了先导系统的数值解可以很好地用从容器到源的演化孤子波来描述。在到达缺氧区释放生长因子之前,这个波在中间时间是一个吸引子。因此,这里使用的数学技术确定了离散和连续方法的共同特征,并提供了对控制其集体动力学的一般生物机制的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supersonic friction of a black hole traversing a self-interacting scalar dark matter cloud Analysis of loss correction with the Gottesman-Kitaev-Preskill code Radiation of optical angular momentum from a dipole source in a magneto-birefringent disordered environment Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance Nonequilibrium steady states in coupled asymmetric and symmetric exclusion processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1