Analysis of loss correction with the Gottesman-Kitaev-Preskill code

Jacob Hastrup, Ulrik L. Andersen
{"title":"Analysis of loss correction with the Gottesman-Kitaev-Preskill code","authors":"Jacob Hastrup, Ulrik L. Andersen","doi":"10.1103/physreva.108.052413","DOIUrl":null,"url":null,"abstract":"The Gottesman-Kitaev-Preskill (GKP) code is a promising bosonic quantum error-correcting code, encoding logical qubits into a bosonic mode in such a way that many physically relevant noise types can be corrected effectively. A particularly relevant noise channel is the pure loss channel, which the GKP code is known to protect against. In particular, it is commonly pointed out that losses can be corrected by the GKP code by transforming the losses into random Gaussian displacements through a quantum-limited amplification channel. However, implementing such amplification in practice is not ideal and could easily introduce an additional overhead of noise from associated experimental imperfections. Here, we analyze the performance of teleportation-based GKP error correction against loss in the absence of an amplification channel. We show that amplification is not required to perform GKP error correction and that performing amplification actually worsens the performance for practically relevant parameter regimes.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"9 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.108.052413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Gottesman-Kitaev-Preskill (GKP) code is a promising bosonic quantum error-correcting code, encoding logical qubits into a bosonic mode in such a way that many physically relevant noise types can be corrected effectively. A particularly relevant noise channel is the pure loss channel, which the GKP code is known to protect against. In particular, it is commonly pointed out that losses can be corrected by the GKP code by transforming the losses into random Gaussian displacements through a quantum-limited amplification channel. However, implementing such amplification in practice is not ideal and could easily introduce an additional overhead of noise from associated experimental imperfections. Here, we analyze the performance of teleportation-based GKP error correction against loss in the absence of an amplification channel. We show that amplification is not required to perform GKP error correction and that performing amplification actually worsens the performance for practically relevant parameter regimes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gottesman-Kitaev-Preskill码的损耗校正分析
Gottesman-Kitaev-Preskill (GKP)码是一种很有前途的玻色子量子纠错码,它将逻辑量子比特编码成玻色子模式,从而可以有效地纠正许多物理上相关的噪声类型。一个特别相关的噪声信道是纯损耗信道,这是GKP代码所保护的。特别是,通常指出损耗可以通过GKP码通过量子限制放大通道将损耗转换为随机高斯位移来校正。然而,在实践中实现这样的放大是不理想的,并且可以很容易地引入额外的开销噪声从相关的实验缺陷。在这里,我们分析了在没有放大信道的情况下,基于隐形传态的GKP纠错的性能。我们表明,执行GKP误差校正不需要放大,并且执行放大实际上会使实际相关参数制度的性能恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supersonic friction of a black hole traversing a self-interacting scalar dark matter cloud Analysis of loss correction with the Gottesman-Kitaev-Preskill code Radiation of optical angular momentum from a dipole source in a magneto-birefringent disordered environment Epistasis and pleiotropy shape biophysical protein subspaces associated with drug resistance Nonequilibrium steady states in coupled asymmetric and symmetric exclusion processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1