Biochar and manure additions increased above- and belowground wood decomposition, and soil enzyme activities in a sandy loam soil

IF 5.9 3区 工程技术 Q1 AGRONOMY Global Change Biology Bioenergy Pub Date : 2023-11-14 DOI:10.1111/gcbb.13110
Ruirui Zhao, Deborah S. Page-Dumroese, Yong Liu, Kai Wang, R. Kasten Dumroese
{"title":"Biochar and manure additions increased above- and belowground wood decomposition, and soil enzyme activities in a sandy loam soil","authors":"Ruirui Zhao,&nbsp;Deborah S. Page-Dumroese,&nbsp;Yong Liu,&nbsp;Kai Wang,&nbsp;R. Kasten Dumroese","doi":"10.1111/gcbb.13110","DOIUrl":null,"url":null,"abstract":"<p>While biochar and manure can provide considerable benefits to soil properties, how these amendments may alter soil microbial activity and decomposition processes remains unknown. In a split-split-split-plot experiment, we amended a sandy loam soil with three rates of manure (whole plot; 0, 3, 9 Mg ha<sup>−1</sup>) and biochar (split-plot; 0, 2.5, 10 Mg ha<sup>−1</sup>), and installed three species of wood stakes (split-split-split plot; triploid poplar, <i>Populus tomentosa</i> Carr.; trembling aspen, <i>Populus tremuloides</i> Michx.; and loblolly pine, <i>Pinus taeda</i> L.) on the soil surface and in the mineral soil (split-split plot) to serve as a substrate for microbial degradation. Wood stakes were sampled 3 years after installation to assess decomposition rates (mass loss), and changes in wood carbon (C) and nitrogen (N). In addition, soil extracellular enzyme activities at the 0–20 cm depth were examined. Biochar alone, especially 10 Mg ha<sup>−1</sup>, increased wood stake decomposition and moisture content on the soil surface and in the mineral soil. Manure at the rate of 9 Mg ha<sup>−1</sup> increased soil N-acetyl-β-D-glucosaminidase, α-glucosidase, and aryl sulfatase activities by 91%, 17%, and 48% respectively. Because of the synergistic benefits of biochar and manure, we suggest that, in this climatic regime and soil texture, 10 Mg ha<sup>−1</sup> biochar can be used for soil C sequestration and soil quality improvement, and 9 Mg ha<sup>−1</sup> manure can be used in combination with biochar to build soil organic matter in plantations.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

While biochar and manure can provide considerable benefits to soil properties, how these amendments may alter soil microbial activity and decomposition processes remains unknown. In a split-split-split-plot experiment, we amended a sandy loam soil with three rates of manure (whole plot; 0, 3, 9 Mg ha−1) and biochar (split-plot; 0, 2.5, 10 Mg ha−1), and installed three species of wood stakes (split-split-split plot; triploid poplar, Populus tomentosa Carr.; trembling aspen, Populus tremuloides Michx.; and loblolly pine, Pinus taeda L.) on the soil surface and in the mineral soil (split-split plot) to serve as a substrate for microbial degradation. Wood stakes were sampled 3 years after installation to assess decomposition rates (mass loss), and changes in wood carbon (C) and nitrogen (N). In addition, soil extracellular enzyme activities at the 0–20 cm depth were examined. Biochar alone, especially 10 Mg ha−1, increased wood stake decomposition and moisture content on the soil surface and in the mineral soil. Manure at the rate of 9 Mg ha−1 increased soil N-acetyl-β-D-glucosaminidase, α-glucosidase, and aryl sulfatase activities by 91%, 17%, and 48% respectively. Because of the synergistic benefits of biochar and manure, we suggest that, in this climatic regime and soil texture, 10 Mg ha−1 biochar can be used for soil C sequestration and soil quality improvement, and 9 Mg ha−1 manure can be used in combination with biochar to build soil organic matter in plantations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
添加生物炭和粪肥可提高沙质壤土的地上和地下木材分解率以及土壤酶活性
虽然生物炭和粪肥对土壤性质有很大益处,但这些改良剂如何改变土壤微生物活动和分解过程仍是未知数。在一项分块-分块-分块实验中,我们用三种比例的粪肥(整块;0、3、9 毫克/公顷-1)和生物炭(分块;0、2.5、10 毫克/公顷-1)改良了沙壤土,并安装了三种木桩(分块-分块-分块;三倍体杨树,Populus tomentosa Carr.在土壤表面和矿质土壤中(分割-分割小区)安装三种木桩(分割-分割小区;三倍体杨树(Populus tomosa Carr.);颤杨(Populus tremuloides Michx.);长叶松(Pinus taeda L.)),作为微生物降解的基质。木桩安装 3 年后取样评估分解率(质量损失)以及木碳(C)和木氮(N)的变化。此外,还考察了 0-20 厘米深度的土壤胞外酶活性。单独使用生物炭,尤其是 10 Mg ha-1,可增加土壤表面和矿质土壤中木桩的分解和水分含量。每公顷 9 毫克的粪肥可使土壤中的 N-乙酰基-β-D-葡萄糖苷酶、α-葡萄糖苷酶和芳基硫酸酯酶活性分别提高 91%、17% 和 48%。由于生物炭和粪肥的协同增效作用,我们建议在这种气候条件和土壤质地下,可以使用 10 毫克/公顷-1 的生物炭来固碳和改善土壤质量,而 9 毫克/公顷-1 的粪肥可与生物炭结合使用,以增加种植园的土壤有机质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
期刊最新文献
Combining Eddy Covariance Towers, Field Measurements, and the MEMS 2 Ecosystem Model Improves Confidence in the Climate Impacts of Bioenergy With Carbon Capture and Storage Issue Information Potential U.S. Production of Liquid Hydrocarbons From Biomass With Addition of Massive External Heat and Hydrogen Inputs Comparative Economic Analysis Between Bioenergy and Forage Types of Switchgrass for Sustainable Biofuel Feedstock Production: A Data Envelopment Analysis and Cost–Benefit Analysis Approach Carbon Credits Through Wood Use: Revisiting the Maximum Potential and Sensitivity to Key Assumptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1