Xueliu Gong, Wei Shi, Jiarong Wu, Jingsong Qin, Wang Huang, Yanfang Feng, Haijun Sun, Jufeng Zheng, Kun Cheng, Stephen Joseph, Junhui Chen, Rongjun Bian, Lianqing Li, Genxing Pan
Biochar amendments in rice-wheat systems are sustainable for reducing GHGs (greenhouse gases) and improving soil health but the widespread adoption of biochar faces economic challenges. To address limitation, a novel biochar-based urea was formulated for environmental and cost advantages. A pot experiment within a rice-wheat rotation was conducted to evaluate comparative effects of biochar-based urea (CKBU), biochar + urea (BCU), and biochar-based urea + biochar (BCBU) over conventional mineral fertilizer (CKU) on soil ammonia (NH3) volatilization, GHG emissions, soil structure, and crop productivity. Furthermore, fertilizer N fate was tracked using the 15N isotope during wheat season. The results indicated that compared to CKU, CKBU, BCU, and BCBU treatments significantly mitigated NH3 volatilization by 22%–31% during the rice season, and a 19% reduction was observed under the BCBU treatment during the wheat season due to the response of N-cycling microorganisms. Regarding GHG emissions, the CKBU, BCU, and BCBU treatments significantly decreased the global warming potential (GWP) value by 49%–55% during the rice season and by 26%–45% during the wheat season, compared to CKU. Additionally, CKBU enhanced 15N use efficiency by 29% during wheat season, without affecting the rice season. The economic performance indicated that applying BU alone offered a net economic benefit, whereas biochar amendment led to a net economic loss. However, biochar amendment improved SOC and aggregation structure, with a significant increase in macroaggregate distribution over 50% compared to CKU and CKBU. Therefore, BU with small portions of biochar can be as effective in reducing NH3 emissions and mitigating GHG emissions as the use of a large quantity of biochar. Additionally, the BCBU did not show additional synergistic benefits regarding emission reduction or yield enhancement. Therefore, shifting biochar to BU could be a cost-effective approach to achieving sustainable productivity in rice-wheat crop rotation systems.
{"title":"Converting Biochar Into Biochar-Based Urea Promotes Environmental and Economic Sustainability in Rice-Wheat Rotation System","authors":"Xueliu Gong, Wei Shi, Jiarong Wu, Jingsong Qin, Wang Huang, Yanfang Feng, Haijun Sun, Jufeng Zheng, Kun Cheng, Stephen Joseph, Junhui Chen, Rongjun Bian, Lianqing Li, Genxing Pan","doi":"10.1111/gcbb.70014","DOIUrl":"https://doi.org/10.1111/gcbb.70014","url":null,"abstract":"<p>Biochar amendments in rice-wheat systems are sustainable for reducing GHGs (greenhouse gases) and improving soil health but the widespread adoption of biochar faces economic challenges. To address limitation, a novel biochar-based urea was formulated for environmental and cost advantages. A pot experiment within a rice-wheat rotation was conducted to evaluate comparative effects of biochar-based urea (CKBU), biochar + urea (BCU), and biochar-based urea + biochar (BCBU) over conventional mineral fertilizer (CKU) on soil ammonia (NH<sub>3</sub>) volatilization, GHG emissions, soil structure, and crop productivity. Furthermore, fertilizer N fate was tracked using the <sup>15</sup>N isotope during wheat season. The results indicated that compared to CKU, CKBU, BCU, and BCBU treatments significantly mitigated NH<sub>3</sub> volatilization by 22%–31% during the rice season, and a 19% reduction was observed under the BCBU treatment during the wheat season due to the response of N-cycling microorganisms. Regarding GHG emissions, the CKBU, BCU, and BCBU treatments significantly decreased the global warming potential (GWP) value by 49%–55% during the rice season and by 26%–45% during the wheat season, compared to CKU. Additionally, CKBU enhanced <sup>15</sup>N use efficiency by 29% during wheat season, without affecting the rice season. The economic performance indicated that applying BU alone offered a net economic benefit, whereas biochar amendment led to a net economic loss. However, biochar amendment improved SOC and aggregation structure, with a significant increase in macroaggregate distribution over 50% compared to CKU and CKBU. Therefore, BU with small portions of biochar can be as effective in reducing NH<sub>3</sub> emissions and mitigating GHG emissions as the use of a large quantity of biochar. Additionally, the BCBU did not show additional synergistic benefits regarding emission reduction or yield enhancement. Therefore, shifting biochar to BU could be a cost-effective approach to achieving sustainable productivity in rice-wheat crop rotation systems.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wastewater treatment plants have two persistent financial and energetic drains, the carbon dioxide content of biogas, which limits its commercial sale, and the presence of trace organics in the wastewater effluent, which damages the aquatic ecosystem, like the Great Barrier Reef. Biogas is a renewable methane resource that is underutilized due to the variable CO2 content (~40%). Biogas is energy intensive to purify and limited by the economy of scale (> 8.85 GJ/h) to large-scale purification methods, thus small-scale processes require development. Electrocatalytic microbes native to wastewater have been shown to convert CO2 to CH4 and acetate, however complete conversion of the CO2 content to CH4 is energy intensive. Here we show a low power bioelectrochemical fuel cell design to purify biogas to pipeline quality methane (98%), manufacture methane and/or acetate, and remove trace organics, using HCO3− as the transport charge carrier from dissolved CO2 from the biogas through an anion exchange membrane. This decreased the power required to separate CO2 from methane in biogas on a molar basis, resulting in a net energy recovery similar to current industrial systems. Magnesium anode use resulted in an energy positive system. Tests evaluated the influence of cathode potential on the current density, HCO3− ion flux and the rates and efficiencies of methane production, resulting in optimization at −0.7 V versus standard hydrogen electrode (SHE). A techno-economic analysis modeled a positive return on investment for scaled-up production to purify small biogas streams that are otherwise financially unrecoverable. Carbon sequestration by production of methane, acetate and solid fertilizers demonstrated profitable and energy efficient waste-to-resource conversion.
{"title":"Biogas Purification by Methane and Acetate Manufacturing","authors":"J. R. Mueller Klein","doi":"10.1111/gcbb.70004","DOIUrl":"https://doi.org/10.1111/gcbb.70004","url":null,"abstract":"<p>Wastewater treatment plants have two persistent financial and energetic drains, the carbon dioxide content of biogas, which limits its commercial sale, and the presence of trace organics in the wastewater effluent, which damages the aquatic ecosystem, like the Great Barrier Reef. Biogas is a renewable methane resource that is underutilized due to the variable CO<sub>2</sub> content (~40%). Biogas is energy intensive to purify and limited by the economy of scale (> 8.85 GJ/h) to large-scale purification methods, thus small-scale processes require development. Electrocatalytic microbes native to wastewater have been shown to convert CO<sub>2</sub> to CH<sub>4</sub> and acetate, however complete conversion of the CO<sub>2</sub> content to CH<sub>4</sub> is energy intensive. Here we show a low power bioelectrochemical fuel cell design to purify biogas to pipeline quality methane (98%), manufacture methane and/or acetate, and remove trace organics, using HCO<sub>3</sub><sup>−</sup> as the transport charge carrier from dissolved CO<sub>2</sub> from the biogas through an anion exchange membrane. This decreased the power required to separate CO<sub>2</sub> from methane in biogas on a molar basis, resulting in a net energy recovery similar to current industrial systems. Magnesium anode use resulted in an energy positive system. Tests evaluated the influence of cathode potential on the current density, HCO<sub>3</sub><sup>−</sup> ion flux and the rates and efficiencies of methane production, resulting in optimization at −0.7 V versus standard hydrogen electrode (SHE). A techno-economic analysis modeled a positive return on investment for scaled-up production to purify small biogas streams that are otherwise financially unrecoverable. Carbon sequestration by production of methane, acetate and solid fertilizers demonstrated profitable and energy efficient waste-to-resource conversion.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Practical strategies for bioenergy planning in the face of climate change should rely on ready-to-use yield projections. Perennial grasses grown in marginal lands (MLs) provide abundant feedstocks to be converted into different energy vectors. The aim of this study was to provide a model-based assessment of how much energy, in the form of biomethane and bioethanol, can be achieved by Miscanthus and giant reed across Italy. Marginal lands were here conceived as low profitable non-irrigated areas, without mechanization and/or nature conservation constraints. Marginal lands eligible for simulations were selected crossing environmental factors and ecological requirements of the two crops. The biophysical model Arungro was calibrated considering rainfed/full-irrigated systems using multiple-site and multiple-year datasets. The model was connected to a georeferenced database, with information on (i) current/future climate, (ii) agronomic practices, (iii) soil physics/hydrology, (iv) MLs, and (v) crop suitability to environment and simulations were performed at 500 × 500 m spatial resolution across all Italian regions. Under baseline conditions (i.e., 1981–2010), the total area of MLs available for energy crops (i.e., 49,100 km2) allowed to obtain 23,500 (giant reed) and 23,700 (Miscanthus) Giga-m3 CH4-STP of biomethane and 18,600 (giant reed) and 24,400 (Miscanthus) Giga-liters of bioethanol. While the amount of energy carriers is expected to increase, on average, of +4.6% in 2055 and + 0.4% (mean of +9.2%—South, −2.4%—Center, −5.4%—North Italy) in 2085 for Miscanthus, giant reed-based productions are projected to be more stable across the country and time frames (+6.7% in 2055; +2.8% in 2085). This study contributed to define a modular and detailed procedure aimed at quantifying attainable energy yields from bioenergy grasses in MLs. The consideration of fine-resolution multiple-scale heterogeneity allowed for an in-depth investigation of biomass productivity, attainable energy yields, and related stability under current/climate change scenarios, highlighting critical spots and opportunities within the country.
{"title":"How much energy can giant reed and Miscanthus produce in marginal lands across Italy? A modelling solution under current and future scenarios","authors":"Giovanni Alessandro Cappelli, Fabrizio Ginaldi, Davide Fanchini, Enrico Ceotto, Marcello Donatelli","doi":"10.1111/gcbb.13186","DOIUrl":"https://doi.org/10.1111/gcbb.13186","url":null,"abstract":"<p>Practical strategies for bioenergy planning in the face of climate change should rely on ready-to-use yield projections. Perennial grasses grown in marginal lands (MLs) provide abundant feedstocks to be converted into different energy vectors. The aim of this study was to provide a model-based assessment of how much energy, in the form of biomethane and bioethanol, can be achieved by Miscanthus and giant reed across Italy. Marginal lands were here conceived as low profitable non-irrigated areas, without mechanization and/or nature conservation constraints. Marginal lands eligible for simulations were selected crossing environmental factors and ecological requirements of the two crops. The biophysical model Arungro was calibrated considering rainfed/full-irrigated systems using multiple-site and multiple-year datasets. The model was connected to a georeferenced database, with information on (i) current/future climate, (ii) agronomic practices, (iii) soil physics/hydrology, (iv) MLs, and (v) crop suitability to environment and simulations were performed at 500 × 500 m spatial resolution across all Italian regions. Under baseline conditions (i.e., 1981–2010), the total area of MLs available for energy crops (i.e., 49,100 km<sup>2</sup>) allowed to obtain 23,500 (giant reed) and 23,700 (Miscanthus) Giga-m<sup>3</sup> CH4-STP of biomethane and 18,600 (giant reed) and 24,400 (Miscanthus) Giga-liters of bioethanol. While the amount of energy carriers is expected to increase, on average, of +4.6% in 2055 and + 0.4% (mean of +9.2%—South, −2.4%—Center, −5.4%—North Italy) in 2085 for Miscanthus, giant reed-based productions are projected to be more stable across the country and time frames (+6.7% in 2055; +2.8% in 2085). This study contributed to define a modular and detailed procedure aimed at quantifying attainable energy yields from bioenergy grasses in MLs. The consideration of fine-resolution multiple-scale heterogeneity allowed for an in-depth investigation of biomass productivity, attainable energy yields, and related stability under current/climate change scenarios, highlighting critical spots and opportunities within the country.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdalla, K., Uther, H., Kurbel, V. B., Wild, A. J., Lauerer, M., Pausch, J. 2024. Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize. Global Change Biology Bioenergy 16:e70007, https://doi.org/10.1111/gcbb.70007
In the article by Abdalla et al. (2024), we found an error in the unit of soil organic carbon (SOC) stocks in Figure 3d–f. Specifically, the original unit was given as g C m−2, but it should be kg C m−2. In addition, it was not clearly stated in the figure legend that these data represent an average of 9 soil depths of 10 cm each (0–90 cm profile).
Another minor error in the unit of Figure 5b, where the unit of the microbial biomass nitrogen was given in mg C kg−1 soil, which should be mg N kg−1 soil.
We apologise for any inconvenience this error may cause.
Abdalla, K., Uther, H., Kurbel, V. B., Wild, A. J, Lauerer, M., Pausch, J. 2024。中度干旱在不改变多年生杯型和青贮玉米土壤有机碳动态的情况下抑制作物生长。Global Change Biology Bioenergy 16:e70007, https://doi.org/10.1111/gcbb.70007In在Abdalla et al.(2024)的文章中,我们发现图3d-f中土壤有机碳(SOC)储量单位存在错误。具体来说,原来的单位是g cm - 2,但它应该是kg cm - 2。此外,在图例中没有明确说明这些数据代表平均9个土壤深度,每个10厘米(0-90厘米剖面)。图5b的单位还有一个小错误,其中微生物生物量氮的单位是在mg C kg - 1土壤中给出的,应该是mg N kg - 1土壤。对于此错误可能造成的任何不便,我们深表歉意。
{"title":"Correction to “Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize”","authors":"","doi":"10.1111/gcbb.70013","DOIUrl":"https://doi.org/10.1111/gcbb.70013","url":null,"abstract":"<p>Abdalla, K., Uther, H., Kurbel, V. B., Wild, A. J., Lauerer, M., Pausch, J. 2024. Moderate Drought Constrains Crop Growth Without Altering Soil Organic Carbon Dynamics in Perennial Cup-Plant and Silage Maize. Global Change Biology Bioenergy 16:e70007, https://doi.org/10.1111/gcbb.70007</p><p>In the article by Abdalla et al. (2024), we found an error in the unit of soil organic carbon (SOC) stocks in Figure 3d–f. Specifically, the original unit was given as <b>g</b> C m<sup>−2</sup>, but it should be <b>kg</b> C m<sup>−2</sup>. In addition, it was not clearly stated in the figure legend that these data represent an average of 9 soil depths of 10 cm each (0–90 cm profile).</p><p>Another minor error in the unit of Figure 5b, where the unit of the microbial biomass nitrogen was given in mg <b>C</b> kg<sup>−1</sup> soil, which should be mg <b>N</b> kg<sup>−1</sup> soil.</p><p>We apologise for any inconvenience this error may cause.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guler Aslan-Sungur (Rojda), Nic Boersma, Caitlin E. Moore, Emily Heaton, Carl J. Bernacchi, Andy Vanloocke
Agricultural lands hold significant potential for CO2 sequestration, particularly when utilizing biomass crops and agricultural residues. Among these, Miscanthus × giganteus (mxg) stands out due to its high productivity and carbon sequestration capabilities. Recognizing the importance of such biomass crops, the Intergovernmental Panel on Climate Change (IPCC) has identified Bioenergy with Carbon Capture and Storage (BECCS) as a crucial strategy for achieving net-zero CO2 emissions by 2050. This study examines the carbon uptake potential of mxg during its establishment year at the Sustainable Advanced Bioeconomy Research (SABR) farm in Iowa, USA, where mxg was planted at a density exceeding previous studies. Using eddy covariance (EC) measurements, we quantified the net ecosystem carbon exchange (NEE), and derived gross primary productivity (GPP), and ecosystem respiration (Reco). Our findings reveal that SABR's mxg exhibited a significant carbon uptake of −621 g C m−2, a threefold increase compared to a similar EC site in the “corn-belt” (University of Illinois Energy Research Farm; UIEF), which was established with lower planting density and pre-commercial planting equipment. Favorable growing conditions and advanced planting technologies at SABR likely contributed to this high carbon uptake. Comparisons with other global EC studies indicated a strong correlation between higher planting densities and greater carbon uptake. These results suggest that increasing mxg planting density can enhance carbon uptake, but further studies are necessary to evaluate the impacts under varying environmental conditions and management practices. Additionally, economic analyses are essential to determine the viability of higher planting densities. Our study underscores the potential of optimized mxg management practices to contribute significantly to CO2 uptake and supports the development of BECCS as a viable climate change mitigation strategy.
农业用地具有封存二氧化碳的巨大潜力,特别是在利用生物质作物和农业残留物时。其中,芒草(Miscanthus × giganteus, mxg)因其高产和固碳能力而脱颖而出。认识到这类生物质作物的重要性,政府间气候变化专门委员会(IPCC)已将生物能源与碳捕获与封存(BECCS)确定为到2050年实现二氧化碳净零排放的关键战略。本研究在美国爱荷华州可持续先进生物经济研究(SABR)农场考察了mxg在其建立年度的碳吸收潜力,该农场以超过以往研究的密度种植mxg。利用涡动相关(EC)测量,我们量化了净生态系统碳交换(NEE),并推导了总初级生产力(GPP)和生态系统呼吸(Reco)。我们的研究结果表明,SABR的mxg表现出显著的碳吸收- 621 g cm - 2,与“玉米带”的类似EC站点相比增加了三倍(伊利诺伊大学能源研究农场;UIEF),以较低的种植密度和商业化前的种植设备建立。SABR有利的生长条件和先进的种植技术可能促成了这种高碳吸收。与其他全球EC研究的比较表明,较高的种植密度与较高的碳吸收量之间存在很强的相关性。这些结果表明,增加种植密度可以促进碳吸收,但需要进一步研究在不同环境条件和管理措施下的影响。此外,经济分析对于确定较高种植密度的可行性至关重要。我们的研究强调了优化的温室气体管理实践在显著促进二氧化碳吸收方面的潜力,并支持将BECCS发展为一项可行的气候变化缓解战略。
{"title":"Advances in Miscanthus × Giganteus Planting Techniques May Increase Carbon Uptake in the Establishment Year","authors":"Guler Aslan-Sungur (Rojda), Nic Boersma, Caitlin E. Moore, Emily Heaton, Carl J. Bernacchi, Andy Vanloocke","doi":"10.1111/gcbb.70012","DOIUrl":"https://doi.org/10.1111/gcbb.70012","url":null,"abstract":"<p>Agricultural lands hold significant potential for CO<sub>2</sub> sequestration, particularly when utilizing biomass crops and agricultural residues. Among these, Miscanthus × giganteus (<i>mxg</i>) stands out due to its high productivity and carbon sequestration capabilities. Recognizing the importance of such biomass crops, the Intergovernmental Panel on Climate Change (IPCC) has identified Bioenergy with Carbon Capture and Storage (BECCS) as a crucial strategy for achieving net-zero CO<sub>2</sub> emissions by 2050. This study examines the carbon uptake potential of <i>mxg</i> during its establishment year at the Sustainable Advanced Bioeconomy Research (SABR) farm in Iowa, USA, where <i>mxg</i> was planted at a density exceeding previous studies. Using eddy covariance (EC) measurements, we quantified the net ecosystem carbon exchange (NEE), and derived gross primary productivity (GPP), and ecosystem respiration (<i>R</i><sub>eco</sub>). Our findings reveal that SABR's <i>mxg</i> exhibited a significant carbon uptake of −621 g C m<sup>−2</sup>, a threefold increase compared to a similar EC site in the “corn-belt” (University of Illinois Energy Research Farm; UIEF), which was established with lower planting density and pre-commercial planting equipment. Favorable growing conditions and advanced planting technologies at SABR likely contributed to this high carbon uptake. Comparisons with other global EC studies indicated a strong correlation between higher planting densities and greater carbon uptake. These results suggest that increasing <i>mxg</i> planting density can enhance carbon uptake, but further studies are necessary to evaluate the impacts under varying environmental conditions and management practices. Additionally, economic analyses are essential to determine the viability of higher planting densities. Our study underscores the potential of optimized <i>mxg</i> management practices to contribute significantly to CO<sub>2</sub> uptake and supports the development of BECCS as a viable climate change mitigation strategy.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 1","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manqoba Shezi, Sammy Lewis Kiambi, Yusuf Makarfi Isa
Thermochemical conversion of giant reed biomass during periodic variations has been carried out in a semi-batch tubular reactor at 550°C. This study was carried out after the incineration of giant reed along the river banks. Four periodic variations, late spring (HS-4), late summer (HS-1), late autumn (HS-2), and late winter (HS-3) were considered to investigate the effect of harvest time on biomass fuel properties, pyrolysis product distribution, non-condensable gas characterization, and bio-oil organic phase (BOP) fuel properties. The considered biomasses herein had average calorific values of 18.86 ± 0.05, 19.73 ± 0.05, 19.23 ± 0.04, and 18.44 ± 0.04 MJ/kg during HS-1, HS-2, HS-3, and HS-4, respectively. The biomass, bio-oil organic phase, biochar, and pyrolysis gas were characterized using thermogravimetric analysis (TGA), gas chromatography–mass spectroscopy (GCMS), Fourier transform infrared spectroscopy (FTIR), micro-GC, and scanning electron microscopy (SEM/EDS). The organic phase of bio-oil was isolated using a 125 mL separating funnel, allowing natural stratification of the immiscible phases. BOP yield increased from 5 to 11 wt% during HS-4 and HS-3, respectively. Higher heating values (HHV) of the BOP ranged from 19.4 ± 0.03 to 22.6 ± 0.02 MJ/kg in relation to the active growth stage and senescence-dormant phase. Physical and chemical properties (TAN, density, viscosity, water content, and CHNS) and chemical compound groups of organic phase bio-oil were analyzed. The produced BOP was rich in phenolics for all considered periods. The effect of harvest time showed that biomass and bio-oil organic phase fuel properties are improved during the senescence-dormant period. As a result, giant reed biomass should be harvested during autumn to avoid incineration that releases carbon dioxide into the atmosphere and will also reduce the occurrence of artificial flooding.
{"title":"Seasonal Harvesting Impact on Biomass Fuel Properties and Pyrolysis-Derived Bio-Oil Organic Phase Composition","authors":"Manqoba Shezi, Sammy Lewis Kiambi, Yusuf Makarfi Isa","doi":"10.1111/gcbb.70011","DOIUrl":"https://doi.org/10.1111/gcbb.70011","url":null,"abstract":"<p>Thermochemical conversion of giant reed biomass during periodic variations has been carried out in a semi-batch tubular reactor at 550°C. This study was carried out after the incineration of giant reed along the river banks. Four periodic variations, late spring (HS-4), late summer (HS-1), late autumn (HS-2), and late winter (HS-3) were considered to investigate the effect of harvest time on biomass fuel properties, pyrolysis product distribution, non-condensable gas characterization, and bio-oil organic phase (BOP) fuel properties. The considered biomasses herein had average calorific values of 18.86 ± 0.05, 19.73 ± 0.05, 19.23 ± 0.04, and 18.44 ± 0.04 MJ/kg during HS-1, HS-2, HS-3, and HS-4, respectively. The biomass, bio-oil organic phase, biochar, and pyrolysis gas were characterized using thermogravimetric analysis (TGA), gas chromatography–mass spectroscopy (GCMS), Fourier transform infrared spectroscopy (FTIR), micro-GC, and scanning electron microscopy (SEM/EDS). The organic phase of bio-oil was isolated using a 125 mL separating funnel, allowing natural stratification of the immiscible phases. BOP yield increased from 5 to 11 wt% during HS-4 and HS-3, respectively. Higher heating values (HHV) of the BOP ranged from 19.4 ± 0.03 to 22.6 ± 0.02 MJ/kg in relation to the active growth stage and senescence-dormant phase. Physical and chemical properties (TAN, density, viscosity, water content, and CHNS) and chemical compound groups of organic phase bio-oil were analyzed. The produced BOP was rich in phenolics for all considered periods. The effect of harvest time showed that biomass and bio-oil organic phase fuel properties are improved during the senescence-dormant period. As a result, giant reed biomass should be harvested during autumn to avoid incineration that releases carbon dioxide into the atmosphere and will also reduce the occurrence of artificial flooding.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio Alejandro Barrios Latorre, Lovisa Björnsson, Thomas Prade
Promoting the bioeconomy to aid in the achievement of sustainability goals has increased demand for biomass as feedstock. Residual biomass from agricultural production is an attractive option, as it is a by-product that does not compete with food production. However, crop residues are important for the preservation of soil quality, especially for the maintenance of soil organic carbon. Therefore, their use can conflict with environmental goals and initiatives that aim to preserve soil fertility and carbon stocks. Nevertheless, the adoption of intermediate crops could compensate for the negative effects of crop residue removal. Moreover, if crop residues are used for a bioeconomy pathway such as biogas production, the resulting digestate derived from the anaerobic digestion process could be returned to the soil, providing an input of highly recalcitrant carbon. In this study, we modeled the effects of removal of crop residues, the cultivation of intermediate crops, and the application of digestate on Swedish soil organic carbon stocks. Our results suggest that the inclusion of intermediate crops could raise the carbon stocks at equilibrium by an average of 1.93 t C ha−1 (~3% increase) with a notable spatial variation. Digestate application showed a higher average increase (3.3 t C ha−1, ~5%) with an even higher variation. The removal of crop residues was detrimental in some areas, resulting in a loss of carbon, which could not be compensated for entirely by the introduction of intermediate crops or digestate recycling. Combining these two practices showed overall positive effects on soil organic carbon stocks; however, the results cannot be generalized at any spatial location, and we emphasize the importance of assessments tailored to local conditions.
{"title":"Managing Soil Carbon Sequestration: Assessing the Effects of Intermediate Crops, Crop Residue Removal, and Digestate Application on Swedish Arable Land","authors":"Sergio Alejandro Barrios Latorre, Lovisa Björnsson, Thomas Prade","doi":"10.1111/gcbb.70010","DOIUrl":"https://doi.org/10.1111/gcbb.70010","url":null,"abstract":"<p>Promoting the bioeconomy to aid in the achievement of sustainability goals has increased demand for biomass as feedstock. Residual biomass from agricultural production is an attractive option, as it is a by-product that does not compete with food production. However, crop residues are important for the preservation of soil quality, especially for the maintenance of soil organic carbon. Therefore, their use can conflict with environmental goals and initiatives that aim to preserve soil fertility and carbon stocks. Nevertheless, the adoption of intermediate crops could compensate for the negative effects of crop residue removal. Moreover, if crop residues are used for a bioeconomy pathway such as biogas production, the resulting digestate derived from the anaerobic digestion process could be returned to the soil, providing an input of highly recalcitrant carbon. In this study, we modeled the effects of removal of crop residues, the cultivation of intermediate crops, and the application of digestate on Swedish soil organic carbon stocks. Our results suggest that the inclusion of intermediate crops could raise the carbon stocks at equilibrium by an average of 1.93 t C ha<sup>−1</sup> (~3% increase) with a notable spatial variation. Digestate application showed a higher average increase (3.3 t C ha<sup>−1</sup>, ~5%) with an even higher variation. The removal of crop residues was detrimental in some areas, resulting in a loss of carbon, which could not be compensated for entirely by the introduction of intermediate crops or digestate recycling. Combining these two practices showed overall positive effects on soil organic carbon stocks; however, the results cannot be generalized at any spatial location, and we emphasize the importance of assessments tailored to local conditions.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to isolate, purify, and characterize a lipase from the gut symbiont Bacillus megaterium F25 (GenBank accession: MF597792) of the aquatic insect Rhantus suturalis, with a focus on its potential applications in biodiesel and food industries. Under optimized culture conditions, B. megaterium F25 could produce 583 U/L of lipase in shaking flask culture. The purified lipase (PL) exhibited a specific activity with 113.89 U/mg, and its molecular weight was determined as 34 kDa. The activity of PL was enhanced by methanol, ethanol, Tween-80, Triton X-100, Ca2+, and Mg2+, while β-mercaptoethanol, EDTA, SDS, Fe2+, Mn2+, and Cu2+ were inhibitory. PL showed optimal activity and stability at neutral and slightly acidic pHs, as well as in a temperature range of 20°C–30°C. PL displayed strong hydrolytic activity toward plant oils and animal fats, indicating its potency for both the food industry and the remediation of oil-contaminated environments. When tested as a catalyst, PL provided biodiesel production with a transesterification yield of 86.8% under optimized conditions (36 h reaction time, 4 mL enzyme solution, 30°C, pH 7.0, and waste cooking oil:methanol ratio of 10 mL/40 mL). This is the first report on the lipase-producing potential of gut microbial symbionts of aquatic insects. Furthermore, B. megaterium lipase was tested for the first time as a biocatalyst for biodiesel production.
{"title":"A New Enzyme for Biodiesel Production and Food Applications: Lipase of Bacillus megaterium F25 Isolated From an Aquatic Insect Rhantus suturalis","authors":"Fatima Karaman, Umit Incekara, Nazli Pinar Arslan, Seyda Albayrak, Serkan Ortucu, Mesut Taskin","doi":"10.1111/gcbb.70009","DOIUrl":"https://doi.org/10.1111/gcbb.70009","url":null,"abstract":"<p>This study aimed to isolate, purify, and characterize a lipase from the gut symbiont <i>Bacillus megaterium</i> F25 (GenBank accession: MF597792) of the aquatic insect <i>Rhantus suturalis</i>, with a focus on its potential applications in biodiesel and food industries. Under optimized culture conditions, <i>B. megaterium</i> F25 could produce 583 U/L of lipase in shaking flask culture. The purified lipase (PL) exhibited a specific activity with 113.89 U/mg, and its molecular weight was determined as 34 kDa. The activity of PL was enhanced by methanol, ethanol, Tween-80, Triton X-100, Ca<sup>2+</sup>, and Mg<sup>2+</sup>, while β-mercaptoethanol, EDTA, SDS, Fe<sup>2+</sup>, Mn<sup>2+</sup>, and Cu<sup>2+</sup> were inhibitory. PL showed optimal activity and stability at neutral and slightly acidic pHs, as well as in a temperature range of 20°C–30°C. PL displayed strong hydrolytic activity toward plant oils and animal fats, indicating its potency for both the food industry and the remediation of oil-contaminated environments. When tested as a catalyst, PL provided biodiesel production with a transesterification yield of 86.8% under optimized conditions (36 h reaction time, 4 mL enzyme solution, 30°C, pH 7.0, and waste cooking oil:methanol ratio of 10 mL/40 mL). This is the first report on the lipase-producing potential of gut microbial symbionts of aquatic insects. Furthermore, <i>B. megaterium</i> lipase was tested for the first time as a biocatalyst for biodiesel production.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Parenti, Walter Zegada-Lizarazu, Karla Dussan, Ana M. López-Contreras, Truus de Vrije, Igor Staritsky, Berien Elbersen, Bert Annevelink, Fulvio Di Fulvio, Katja Oehmichen, Niels Dögnitz, Andrea Monti
Increasing lignocellulosic feedstock for advanced biofuels can tackle the decarbonization of the transport sector. Dedicated biomass produced alongside food systems with low indirect land use change (iLUC) impact can broaden the feedstock availability, thus streamlining the supply chains. The objective of this study was the design and evaluation of advanced ethanol value chains for the Emilia-Romagna region based on low iLUC feedstock. Two dedicated lignocellulosic crops (biomass sorghum and sunn hemp) were evaluated in double cropping systems alongside food crop residues (corn stover and wheat straw) as sources to simulate the value chains. A parcel-level regional analysis was carried out, then the LocaGIStics2.0 model was used for the spatial design and review of the biomass delivery chain options regarding cost and greenhouse gas (GHG) emissions of the different feedstock mixes. Literature data on bioethanol production from similar feedstocks were used to estimate yields, process costs, and GHG emissions of a biorefinery process based on these biomasses. Within the chain options, GHG emissions were overly sensitive to cultivation input, mostly N-fertilization. This considered, GHG emissions resulted similar across different feedstock with straw/stover (averaging 13 g CO2eq MJ−1 fuel), sunn hemp (14 g CO2eq MJ−1 fuel), and biomass sorghum (16 g CO2eq MJ−1 fuel). On the other hand, the bioethanol produced from biomass sorghum (608 € Mg−1 of bioethanol) was cheaper compared with straw (632 € Mg−1), sunn hemp (672 € Mg−1), and stover (710 € Mg−1). The bioethanol cost ranged from 0.0017 to 0.020 € MJ−1 fuel depending on the feedstock, with operations and maintenance impacting up to 90% of the final cost. In summary, a single bioethanol plant with an annual capacity of 250,000 Mg of biomass could replace from 5% to 7% of the Emilia-Romagna's ethanol fuel consumption, depending on the applied sourcing scenario.
{"title":"Advanced Biofuel Value Chains Sourced by New Cropping Systems With Low iLUC Risk","authors":"Andrea Parenti, Walter Zegada-Lizarazu, Karla Dussan, Ana M. López-Contreras, Truus de Vrije, Igor Staritsky, Berien Elbersen, Bert Annevelink, Fulvio Di Fulvio, Katja Oehmichen, Niels Dögnitz, Andrea Monti","doi":"10.1111/gcbb.70000","DOIUrl":"https://doi.org/10.1111/gcbb.70000","url":null,"abstract":"<p>Increasing lignocellulosic feedstock for advanced biofuels can tackle the decarbonization of the transport sector. Dedicated biomass produced alongside food systems with low indirect land use change (iLUC) impact can broaden the feedstock availability, thus streamlining the supply chains. The objective of this study was the design and evaluation of advanced ethanol value chains for the Emilia-Romagna region based on low iLUC feedstock. Two dedicated lignocellulosic crops (biomass sorghum and sunn hemp) were evaluated in double cropping systems alongside food crop residues (corn stover and wheat straw) as sources to simulate the value chains. A parcel-level regional analysis was carried out, then the LocaGIStics2.0 model was used for the spatial design and review of the biomass delivery chain options regarding cost and greenhouse gas (GHG) emissions of the different feedstock mixes. Literature data on bioethanol production from similar feedstocks were used to estimate yields, process costs, and GHG emissions of a biorefinery process based on these biomasses. Within the chain options, GHG emissions were overly sensitive to cultivation input, mostly N-fertilization. This considered, GHG emissions resulted similar across different feedstock with straw/stover (averaging 13 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel), sunn hemp (14 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel), and biomass sorghum (16 g CO<sub>2</sub>eq MJ<sup>−1</sup> fuel). On the other hand, the bioethanol produced from biomass sorghum (608 € Mg<sup>−1</sup> of bioethanol) was cheaper compared with straw (632 € Mg<sup>−1</sup>), sunn hemp (672 € Mg<sup>−1</sup>), and stover (710 € Mg<sup>−1</sup>). The bioethanol cost ranged from 0.0017 to 0.020 € MJ<sup>−1</sup> fuel depending on the feedstock, with operations and maintenance impacting up to 90% of the final cost. In summary, a single bioethanol plant with an annual capacity of 250,000 Mg of biomass could replace from 5% to 7% of the Emilia-Romagna's ethanol fuel consumption, depending on the applied sourcing scenario.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aapo Tikka, Anni Hartikainen, Olli Sippula, Antti Kilpeläinen
Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood-based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process-based emissions than non-wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood-based materials and energy were used to replace the production of high-density polyethylene (HDPE) plastic, common fossil-based construction materials (concrete, steel and brick), non-wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NOx), sulphur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO2 and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non-wood counterparts. DFs for wood-based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small-scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use.
{"title":"Displacement Factors for Aerosol Emissions From Alternative Forest Biomass Use","authors":"Aapo Tikka, Anni Hartikainen, Olli Sippula, Antti Kilpeläinen","doi":"10.1111/gcbb.70008","DOIUrl":"https://doi.org/10.1111/gcbb.70008","url":null,"abstract":"<p>Substituting alternative materials and energy sources with forest biomass can cause significant environmental consequences, such as alteration in the released emissions which can be described by displacement factors (DFs). Until now, DFs of wood-based materials have included greenhouse gas (GHG) emissions and have been associated with lower fossil and process-based emissions than non-wood counterparts. In addition to GHGs, aerosols released in combustion processes, for example, alter radiative forcing in the atmosphere and consequently have an influence on climate. In this study, the objective was to quantify the changes in the most important aerosol emission components for cases when wood-based materials and energy were used to replace the production of high-density polyethylene (HDPE) plastic, common fossil-based construction materials (concrete, steel and brick), non-wood textile materials and energy produced by fossil fuels and peat. For this reason, we expanded the DF calculations to include aerosol emissions of total suspended particles (TSP), respirable particulate matter (PM10), fine particles (PM2.5), black carbon (BC), nitrogen oxides (NO<sub>x</sub>), sulphur dioxide (SO<sub>2</sub>) and non-methane volatile organic compounds (NMVOCs) based on the embodied energies of materials and energy sources. The DFs for cardboard implied a decrease in BC, SO<sub>2</sub> and NMVOC emissions but an increase in the other emission components. DFs for sawn wood mainly indicated higher emissions of both particles and gaseous emissions compared to non-wood counterparts. DFs for wood-based textiles demonstrated increased particle emissions and reduced gaseous emissions. DFs for energy biomass mainly implied an increase in emissions, especially if biomass was combusted in small-scale appliances. Our main conclusion highlights the critical need to thoroughly assess how using forest biomass affects aerosol emissions. This improved understanding of the aerosol emissions of the forestry sector is crucial for a comprehensive evaluation of the climate and health implications associated with forest biomass use.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}