Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2023-11-14 DOI:10.3390/a16110520
Linhua Zhang, Ning Xiong, Xinghao Pan, Xiaodong Yue, Peng Wu, Caiping Guo
{"title":"Improved Object Detection Method Utilizing YOLOv7-Tiny for Unmanned Aerial Vehicle Photographic Imagery","authors":"Linhua Zhang, Ning Xiong, Xinghao Pan, Xiaodong Yue, Peng Wu, Caiping Guo","doi":"10.3390/a16110520","DOIUrl":null,"url":null,"abstract":"In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"5 2","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In unmanned aerial vehicle photographs, object detection algorithms encounter challenges in enhancing both speed and accuracy for objects of different sizes, primarily due to complex backgrounds and small objects. This study introduces the PDWT-YOLO algorithm, based on the YOLOv7-tiny model, to improve the effectiveness of object detection across all sizes. The proposed method enhances the detection of small objects by incorporating a dedicated small-object detection layer, while reducing the conflict between classification and regression tasks through the replacement of the YOLOv7-tiny model’s detection head (IDetect) with a decoupled head. Moreover, network convergence is accelerated, and regression accuracy is improved by replacing the Complete Intersection over Union (CIoU) loss function with a Wise Intersection over Union (WIoU) focusing mechanism in the loss function. To assess the proposed model’s effectiveness, it was trained and tested on the VisDrone-2019 dataset comprising images captured by various drones across diverse scenarios, weather conditions, and lighting conditions. The experiments show that mAP@0.5:0.95 and mAP@0.5 increased by 5% and 6.7%, respectively, with acceptable running speed compared with the original YOLOv7-tiny model. Furthermore, this method shows improvement over other datasets, confirming that PDWT-YOLO is effective for multiscale object detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于YOLOv7-Tiny的改进无人机摄影图像目标检测方法
在无人机照片中,目标检测算法在提高不同尺寸目标的速度和准确性方面遇到了挑战,主要是由于复杂的背景和小目标。本研究引入了基于YOLOv7-tiny模型的PDWT-YOLO算法,以提高各种尺寸目标检测的有效性。该方法通过引入专用的小目标检测层来增强对小目标的检测,同时通过将YOLOv7-tiny模型的检测头(IDetect)替换为解耦头来减少分类任务与回归任务之间的冲突。通过在损失函数中使用WIoU (Wise Intersection over Union)聚焦机制取代CIoU (Complete Intersection over Union)损失函数,加快了网络收敛速度,提高了回归精度。为了评估所提出的模型的有效性,在VisDrone-2019数据集上对其进行了训练和测试,该数据集包括各种无人机在不同场景、天气条件和照明条件下捕获的图像。实验表明,mAP@0.5:0.95和mAP@0.5分别比原来的YOLOv7-tiny模型提高了5%和6.7%,运行速度可以接受。此外,该方法在其他数据集上也有改进,证实了PDWT-YOLO对多尺度目标检测的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models Particle Swarm Optimization-Based Unconstrained Polygonal Fitting of 2D Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1