Anomaly Detection in High-Dimensional Time Series Data with Scaled Bregman Divergence.

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2025-02-01 Epub Date: 2025-01-24 DOI:10.3390/a18020062
Yunge Wang, Lingling Zhang, Tong Si, Graham Bishop, Haijun Gong
{"title":"Anomaly Detection in High-Dimensional Time Series Data with Scaled Bregman Divergence.","authors":"Yunge Wang, Lingling Zhang, Tong Si, Graham Bishop, Haijun Gong","doi":"10.3390/a18020062","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of anomaly detection is to identify special data points or patterns that significantly deviate from the expected or typical behavior of the majority of the data, and it has a wide range of applications across various domains. Most existing statistical and machine learning-based anomaly detection algorithms face challenges when applied to high-dimensional data. For instance, the unconstrained least-squares importance fitting (uLSIF) method, a state-of-the-art anomaly detection approach, encounters the unboundedness problem under certain conditions. In this study, we propose a scaled Bregman divergence-based anomaly detection algorithm using both least absolute deviation and least-squares loss for parameter learning. This new algorithm effectively addresses the unboundedness problem, making it particularly suitable for high-dimensional data. The proposed technique was evaluated on both synthetic and real-world high-dimensional time series datasets, demonstrating its effectiveness in detecting anomalies. Its performance was also compared to other density ratio estimation-based anomaly detection methods.</p>","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"18 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790285/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a18020062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of anomaly detection is to identify special data points or patterns that significantly deviate from the expected or typical behavior of the majority of the data, and it has a wide range of applications across various domains. Most existing statistical and machine learning-based anomaly detection algorithms face challenges when applied to high-dimensional data. For instance, the unconstrained least-squares importance fitting (uLSIF) method, a state-of-the-art anomaly detection approach, encounters the unboundedness problem under certain conditions. In this study, we propose a scaled Bregman divergence-based anomaly detection algorithm using both least absolute deviation and least-squares loss for parameter learning. This new algorithm effectively addresses the unboundedness problem, making it particularly suitable for high-dimensional data. The proposed technique was evaluated on both synthetic and real-world high-dimensional time series datasets, demonstrating its effectiveness in detecting anomalies. Its performance was also compared to other density ratio estimation-based anomaly detection methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Anomaly Detection in High-Dimensional Time Series Data with Scaled Bregman Divergence. Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1