Protein nanocage engineering for Pickering emulsions and potential food applications

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Colloid & Interface Science Pub Date : 2023-09-28 DOI:10.1016/j.cocis.2023.101761
Samuel Watts, Chase Jia Jing Chow, Sierin Lim
{"title":"Protein nanocage engineering for Pickering emulsions and potential food applications","authors":"Samuel Watts,&nbsp;Chase Jia Jing Chow,&nbsp;Sierin Lim","doi":"10.1016/j.cocis.2023.101761","DOIUrl":null,"url":null,"abstract":"<div><p><span>Protein nanocages used as emulsion stabilizing colloidal particles are opening possibilities to the design of novel delivery systems for food, pharmaceutical and cosmetic applications. Protein nanocage-stabilized emulsions are able to co-deliver hydrophilic and hydrophobic compounds. The surface chemistry of the particles is one of the factors that determines their ability to stabilize the emulsion. Hence, the importance in developing strategies to rationally tailor the nanocage surface chemistry. This contribution summarizes recent advances in protein nanocage </span>Pickering emulsions and the methods used to modify the nanocages. It discusses future strategies that may allow the modification of protein nanocages based on current knowledge of Pickering emulsions and protein nanocage engineering technology. The characterization methods for the investigation of these protein nanocages and nanocage stabilized emulsions are described. Finally, the applications of protein nanocages for nutrient delivery in the gastrointestinal tract will be discussed. This contribution provides a perspective for future work on protein nanocage stabilized emulsions.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000869","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Protein nanocages used as emulsion stabilizing colloidal particles are opening possibilities to the design of novel delivery systems for food, pharmaceutical and cosmetic applications. Protein nanocage-stabilized emulsions are able to co-deliver hydrophilic and hydrophobic compounds. The surface chemistry of the particles is one of the factors that determines their ability to stabilize the emulsion. Hence, the importance in developing strategies to rationally tailor the nanocage surface chemistry. This contribution summarizes recent advances in protein nanocage Pickering emulsions and the methods used to modify the nanocages. It discusses future strategies that may allow the modification of protein nanocages based on current knowledge of Pickering emulsions and protein nanocage engineering technology. The characterization methods for the investigation of these protein nanocages and nanocage stabilized emulsions are described. Finally, the applications of protein nanocages for nutrient delivery in the gastrointestinal tract will be discussed. This contribution provides a perspective for future work on protein nanocage stabilized emulsions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于皮克林乳液和潜在食品应用的蛋白质纳米笼工程
用作乳液稳定胶体颗粒的蛋白质纳米囊为设计食品、药品和化妆品应用领域的新型输送系统提供了可能性。经蛋白质纳米笼稳定的乳液能够同时输送亲水性和疏水性化合物。颗粒的表面化学性质是决定其稳定乳液能力的因素之一。因此,制定合理调整纳米囊表面化学性质的策略非常重要。本文总结了蛋白质纳米笼皮克林乳液的最新进展以及用于修饰纳米笼的方法。它讨论了基于目前对皮克林乳液和蛋白质纳米笼工程技术的了解,未来可能对蛋白质纳米笼进行改性的策略。介绍了研究这些蛋白质纳米笼和纳米笼稳定乳液的表征方法。最后,将讨论蛋白质纳米囊在胃肠道营养输送方面的应用。这篇论文为蛋白质纳米笼稳定乳液的未来工作提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
1.10%
发文量
74
审稿时长
11.3 weeks
期刊介绍: Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications. Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments. Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.
期刊最新文献
A critical examination of the physics behind the formation of particle-laden fluid interfaces Protorheology in practice: Avoiding misinterpretation Rheological effects of rough colloids at fluid interfaces: An overview Non-fused and fused ring non-fullerene acceptors The rise and potential of top interface modification in tin halide perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1