Pub Date : 2024-09-21DOI: 10.1016/j.cocis.2024.101866
Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.
{"title":"Protorheology in practice: Avoiding misinterpretation","authors":"","doi":"10.1016/j.cocis.2024.101866","DOIUrl":"10.1016/j.cocis.2024.101866","url":null,"abstract":"<div><div>Protorheology is the paradigm that any observed flow or deformation is a chance to infer quantitative rheological properties. While this creates many opportunities for insight, there is significant risk of misunderstanding the physics involved, e.g. misinterpreting a liquid as a solid or mistaking viscous flow time as viscoelastic relaxation time. We describe these and other potential mistakes, use case studies to show how serious the problems can be, and contrast misinterpretations with correct approaches and interpretations. Some issues are especially important with materials involving colloidal particles and flows involving surface tension. Whether the reader is making inference from a tilted vial, time-lapse gravity-driven flow, a bounce test, die swell, or any other protorheology observation, the examples here serve as a guide for avoiding bad data in protorheology.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-21DOI: 10.1016/j.cocis.2024.101868
Particle trapping is a powerful tool for tailoring fluid interfaces, offering unprecedented control over interfacial properties and behaviors. In this review, we delve into the intricate mechanisms driving the trapping of particles at the fluid interface. By strategically manipulating particles at fluid interfaces, researchers have unlocked a myriad of opportunities for engineering interfacial phenomena with precision and versatility. In fact, particle trapping strategies enable tailored modifications of fluid interfaces that span a wide range of length scales and material systems. This work explores the underlying principles governing particle–surface interactions, highlighting key factors such as particle size, shape, surface chemistry, and interfacial tension. Through a comprehensive examination of recent developments, this review provides valuable insights into the transformative potential of particle trapping for shaping fluid interfaces, paving the way for innovative applications across various disciplines, including materials science, biotechnology, and environmental engineering.
{"title":"A critical examination of the physics behind the formation of particle-laden fluid interfaces","authors":"","doi":"10.1016/j.cocis.2024.101868","DOIUrl":"10.1016/j.cocis.2024.101868","url":null,"abstract":"<div><div>Particle trapping is a powerful tool for tailoring fluid interfaces, offering unprecedented control over interfacial properties and behaviors. In this review, we delve into the intricate mechanisms driving the trapping of particles at the fluid interface. By strategically manipulating particles at fluid interfaces, researchers have unlocked a myriad of opportunities for engineering interfacial phenomena with precision and versatility. In fact, particle trapping strategies enable tailored modifications of fluid interfaces that span a wide range of length scales and material systems. This work explores the underlying principles governing particle–surface interactions, highlighting key factors such as particle size, shape, surface chemistry, and interfacial tension. Through a comprehensive examination of recent developments, this review provides valuable insights into the transformative potential of particle trapping for shaping fluid interfaces, paving the way for innovative applications across various disciplines, including materials science, biotechnology, and environmental engineering.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.cocis.2024.101864
Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.
有机太阳能电池(OSC)因其轻质、灵活和透明而备受关注。有机太阳能电池材料,特别是非富勒烯受体(NFA)的最新进展带来了显著的改进。非富勒烯受体的特点是结构可调、吸收光谱宽广,可增强电荷分离和整体性能。这些发展使非富勒烯受体成为推动 OSC 技术发展的关键材料,也是一种前景广阔的替代材料。熔环受体(FRA)的开发使功率转换效率(PCE)超过了 19%。尽管取得了这一成功,但复杂的合成工艺和较低的材料产量导致生产成本居高不下,限制了 FRA 在 OSC 中的商业可行性。相反,非熔合环受体(NFRA)具有显著的优势,包括更容易合成、更高的产量和更好的稳定性,有利于生产出具有成本效益的 OSC。基于 NFRA 的 OSC 具有与 FRA 相似的 PCE 值(高于 19%)。本综述介绍了近几个月发表的有关 FRA(尤其是 NFRA)的研究成果。
{"title":"Non-fused and fused ring non-fullerene acceptors","authors":"","doi":"10.1016/j.cocis.2024.101864","DOIUrl":"10.1016/j.cocis.2024.101864","url":null,"abstract":"<div><div>Organic solar cells (OSCs) have attracted attention due to their lightweight, flexibility and transparency. Recent advances in OSC materials, especially non-fullerene acceptors (NFAs), have led to marked improvements. NFAs are characterized by their tunable structures and broad absorption spectra, which enhance charge separation and overall performance. These developments make NFAs pivotal materials in advancing OSC technologies and they represent a promising alternative. The development of fused-ring acceptors (FRAs) has enabled power conversion efficiencies (PCEs) over 19 % to be achieved. Despite this success, the intricate synthesis processes and low material yields result in high production costs limiting the commercial viability of FRAs in OSCs. Conversely, non-fused-ring acceptors (NFRAs) offer significant advantages, including easier synthesis, higher yields and improved stability, facilitating the production of cost-effective OSCs. NFRA-based OSCs have provided similar PCE values to FRAs (above 19 %). The research published in recent months on FRAs – particularly NFRAs – is covered in this review.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1016/j.cocis.2024.101867
Because of the capillary interactions arising from surface corrugation, rough particles at fluid interfaces often exhibit intricate rheological responses to interfacial deformations and material flows, challenging the conventional physicochemical and thermodynamic concepts that were typically applied in bulk suspensions. Although such rheological responses have been widely applied in industrial processes (i.e. crude oil recovery) and some biological systems (i.e. the dynamics of lung alveoli), studies on their physical mechanisms are not summarized systematically. In this work, we present an overview of the rheological effects of rough particle-laden interfaces, where the influences of particles’ softness and geometric roughness are emphatically discussed. We also point out that, relevant rheological effects can be strongly affected by a competition between the particles’ capillary attractions and frictional forces. Potentially, integrating experiments and simulations from a mesoscale perspective would gain deeper insights into the rheological properties for a quasi-2D system.
{"title":"Rheological effects of rough colloids at fluid interfaces: An overview","authors":"","doi":"10.1016/j.cocis.2024.101867","DOIUrl":"10.1016/j.cocis.2024.101867","url":null,"abstract":"<div><div>Because of the capillary interactions arising from surface corrugation, rough particles at fluid interfaces often exhibit intricate rheological responses to interfacial deformations and material flows, challenging the conventional physicochemical and thermodynamic concepts that were typically applied in bulk suspensions. Although such rheological responses have been widely applied in industrial processes (i.e. crude oil recovery) and some biological systems (i.e. the dynamics of lung alveoli), studies on their physical mechanisms are not summarized systematically. In this work, we present an overview of the rheological effects of rough particle-laden interfaces, where the influences of particles’ softness and geometric roughness are emphatically discussed. We also point out that, relevant rheological effects can be strongly affected by a competition between the particles’ capillary attractions and frictional forces. Potentially, integrating experiments and simulations from a mesoscale perspective would gain deeper insights into the rheological properties for a quasi-2D system.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.cocis.2024.101861
Building macro continuous materials that play an important role in our daily lives directly from powder is in line with the development needs of green chemistry. Powders or particles tend to spontaneously aggregate and fuse to reduce the interfacial energy of the system, but compared to solutions or melts, the molecular motion ability in the solid phase is significantly limited. Inspired by the agglomeration of powder and kneading dough, the introduction of a small amount of water and pressure has enabled the preparation of continuous self-supporting materials based on surfactants, and even the construction of ordered molecular membranes through solid-phase molecular self-assembly. This article summarizes the recent work on the construction of macroscopic materials using molecular motion in solid phase, and mainly introduces its principles, self-healing properties, and application directions, including strain sensing, oil absorption, humidity response, circularly polarized luminescence, etc., and looks forward to the future development space.
{"title":"Endowing molecular motions in the solid materials","authors":"","doi":"10.1016/j.cocis.2024.101861","DOIUrl":"10.1016/j.cocis.2024.101861","url":null,"abstract":"<div><div>Building macro continuous materials that play an important role in our daily lives directly from powder is in line with the development needs of green chemistry. Powders or particles tend to spontaneously aggregate and fuse to reduce the interfacial energy of the system, but compared to solutions or melts, the molecular motion ability in the solid phase is significantly limited. Inspired by the agglomeration of powder and kneading dough, the introduction of a small amount of water and pressure has enabled the preparation of continuous self-supporting materials based on surfactants, and even the construction of ordered molecular membranes through solid-phase molecular self-assembly. This article summarizes the recent work on the construction of macroscopic materials using molecular motion in solid phase, and mainly introduces its principles, self-healing properties, and application directions, including strain sensing, oil absorption, humidity response, circularly polarized luminescence, etc., and looks forward to the future development space.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.cocis.2024.101865
The incorporation of a third component in organic solar cells (OSCs), the so-called ternary OSCs, has given rise to an increase in the power conversion efficiencies of the devices. This improvement has been assigned to the broadening of the absorption spectrum, the tuning of the energy levels, and positive changes in the morphology of the active layer, resulting in remarkable power conversion efficiencies (PCE) of up to 20.2 %. Current research highlights the crucial role of morphology in enhancing device performance. However, achieving higher efficiencies requires improved charge dissociation, balanced charge transport, and minimized energy loss and recombination, which is not always attained. This review describes the most common steady-state techniques, such as photoluminescence, and advanced transient techniques, such as transient photovoltage and transient absorption spectroscopy, to gain insights into the photovoltaic charge dynamic processes to contribute to the improvement of the performance of TOSCs.
{"title":"Insights into charge dynamics and recombination processes in ternary organic solar cells through photophysical characterization techniques","authors":"","doi":"10.1016/j.cocis.2024.101865","DOIUrl":"10.1016/j.cocis.2024.101865","url":null,"abstract":"<div><div>The incorporation of a third component in organic solar cells (OSCs), the so-called ternary OSCs, has given rise to an increase in the power conversion efficiencies of the devices. This improvement has been assigned to the broadening of the absorption spectrum, the tuning of the energy levels, and positive changes in the morphology of the active layer, resulting in remarkable power conversion efficiencies (PCE) of up to 20.2 %. Current research highlights the crucial role of morphology in enhancing device performance. However, achieving higher efficiencies requires improved charge dissociation, balanced charge transport, and minimized energy loss and recombination, which is not always attained. This review describes the most common steady-state techniques, such as photoluminescence, and advanced transient techniques, such as transient photovoltage and transient absorption spectroscopy, to gain insights into the photovoltaic charge dynamic processes to contribute to the improvement of the performance of TOSCs.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.cocis.2024.101863
Top interface engineering is becoming one of the preferred methodologies for easily improving tin halide perovskite solar cell efficiency. The particular effectiveness of this strategy for tin-based materials may stem from their fragility in terms of oxidation and defect chemistry. Studies mainly focus on the design of novel fullerenes as interlayers or electron-selective layers, as well as on the application of organic and inorganic molecules of varying sizes. In this mini-review, we highlight the rise and potential of top interface modification in tin halide perovskite solar cells.
{"title":"The rise and potential of top interface modification in tin halide perovskite solar cells","authors":"","doi":"10.1016/j.cocis.2024.101863","DOIUrl":"10.1016/j.cocis.2024.101863","url":null,"abstract":"<div><div>Top interface engineering is becoming one of the preferred methodologies for easily improving tin halide perovskite solar cell efficiency. The particular effectiveness of this strategy for tin-based materials may stem from their fragility in terms of oxidation and defect chemistry. Studies mainly focus on the design of novel fullerenes as interlayers or electron-selective layers, as well as on the application of organic and inorganic molecules of varying sizes. In this mini-review, we highlight the rise and potential of top interface modification in tin halide perovskite solar cells.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1016/j.cocis.2024.101862
Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31st, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.
{"title":"Current progress of perovskite solar cells stability with bibliometric study","authors":"","doi":"10.1016/j.cocis.2024.101862","DOIUrl":"10.1016/j.cocis.2024.101862","url":null,"abstract":"<div><div>Perovskite solar cells have matched or even surpassed commercial silicone-based photovoltaics (PVs) in terms of cost effectiveness and power conversion efficiency. However, the stability is quite far behind the commercial silicone-based PV. Humidity, electrical bias, high temperature, and ultraviolet light are the determining stressors in the degradation of perovskite solar cells. This review provides the current advancement (2022 to July 31<sup>st</sup>, 2024) to the stability problem in perovskite solar cells. Equipped with bibliometric study, we deploy keyword analysis, citation analysis, and notable progress to give an overview and latest progress in perovskite solar cells stability. The importance of interface passivation is highlighted. The scalability studies of nontoxic, lead-free, stable perovskite solar cells are expected in near future.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142357941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1016/j.cocis.2024.101860
The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.
{"title":"How to use stimuli-responsive soft materials for detection?","authors":"","doi":"10.1016/j.cocis.2024.101860","DOIUrl":"10.1016/j.cocis.2024.101860","url":null,"abstract":"<div><div>The growing demand for rapid, cost-effective, and user-friendly detection methods has driven advancements in “stimuli-responsive soft materials” for sensor development. Many examples of complex and liquid crystals emulsions can be found demonstrating their application for the detection of bacteria, virus, enzyme, or specific molecules. However, despite frequent comparisons between emulsions and foams, the exploration of liquid foams for sensor applications remains limited. Paradoxically, foam-based sensors for fetal lung maturity were developed in the 1970s, before the emergence of more sophisticated detection methods. Here, we describe some examples of soft interfaces used as sensor to detect biomarkers, enzymes, and bacteria, with a strong emphasis on foam. We demonstrate how to use the foamability and foam stability as read-out mechanism. We discuss approaches developed for complex emulsions and liquid crystals, highlighting their potential adaptation to liquid foams.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142417337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1016/j.cocis.2024.101859
Rare earth elements (REE) have raised significant environmental concerns due to their increasing use in human activities and subsequent release into the environment. Hence, in the context of growing demand for “green” technologies and potential mismanagement of their life cycle, understanding their potential mobility within and between environmental compartments becomes crucial for evaluating their environmental risks. Colloids emerge as primary carriers/vectors facilitating REE mobility and transfer in the environment. This work addresses major topics related to the control exerted by colloids on the REE speciation and subsequent patterns. Among colloids, iron-organic matter colloids have been identified as the major REE carrier in surface water under various pedoclimatic conditions. Compelling evidences were provided that the mixing of iron-, organic- and iron-organic colloids could explain both REE concentration and pattern under environmental conditions. However, there is currently a lack of data on the specific distribution of REE between the iron and organic matter phases within Fe-OM colloids. It remains unclear whether REE distribution is primarily controlled by colloid mixing since structural rearrangements of Fe-OM colloids under varying hydrological and physicochemical conditions exert also a significant role.
{"title":"Iron-organic matter colloid control rare earth element environmental mobility","authors":"","doi":"10.1016/j.cocis.2024.101859","DOIUrl":"10.1016/j.cocis.2024.101859","url":null,"abstract":"<div><div>Rare earth elements (REE) have raised significant environmental concerns due to their increasing use in human activities and subsequent release into the environment. Hence, in the context of growing demand for “green” technologies and potential mismanagement of their life cycle, understanding their potential mobility within and between environmental compartments becomes crucial for evaluating their environmental risks. Colloids emerge as primary carriers/vectors facilitating REE mobility and transfer in the environment. This work addresses major topics related to the control exerted by colloids on the REE speciation and subsequent patterns. Among colloids, iron-organic matter colloids have been identified as the major REE carrier in surface water under various pedoclimatic conditions. Compelling evidences were provided that the mixing of iron-, organic- and iron-organic colloids could explain both REE concentration and pattern under environmental conditions. However, there is currently a lack of data on the specific distribution of REE between the iron and organic matter phases within Fe-OM colloids. It remains unclear whether REE distribution is primarily controlled by colloid mixing since structural rearrangements of Fe-OM colloids under varying hydrological and physicochemical conditions exert also a significant role.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142326615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}