New weft knitting process: Morphological, physical and mechanical characterisation of the innovative knitted fabrics

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Engineered Fibers and Fabrics Pub Date : 2023-01-01 DOI:10.1177/15589250231205184
Prisca Holderied, Marcus O. Weber, Marie-Ange Bueno
{"title":"New weft knitting process: Morphological, physical and mechanical characterisation of the innovative knitted fabrics","authors":"Prisca Holderied, Marcus O. Weber, Marie-Ange Bueno","doi":"10.1177/15589250231205184","DOIUrl":null,"url":null,"abstract":"A new knitting process is presented based on a novel yarn feeding technique. It allows the knitting of new structures: single jersey on one or both needle beds and rib structure on both needle beds in the same knitting cycle, that is the same needles. The innovative knitted fabrics were compared to standard 1 × 1 rib and plain woven fabrics made from the same material. All samples were tested for physical (grammage, air permeability), morphological (number of stitches per centimetre in wale and course directions and number of stitches per square centimetre, cover factor) and mechanical (uniaxial and multidirectional tensile behaviour) properties. Grammage was used as a reference parameter to render the results comparable. The results show that the innovative fabrics are less stretchable than the standard knitted fabrics, especially in the course direction, therefore more rigid in this direction. Furthermore, they can be mechanically balanced in course and wale directions, which is unexpected for knitted fabrics. The innovative knitted fabrics are thicker than the standard knitted fabrics for the same grammage and have a lower number of stitches per square centimetre, enabling higher production rates. Due to their lower cover factor, the innovative fabrics are expected to be easier to impregnate by resin for composite applications than the standard knitted fabrics. Based on these results and the ability to increase knitting productivity, we conclude that that this novel process can transform future processes and open the door to new markets and applications.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":"2013 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15589250231205184","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

A new knitting process is presented based on a novel yarn feeding technique. It allows the knitting of new structures: single jersey on one or both needle beds and rib structure on both needle beds in the same knitting cycle, that is the same needles. The innovative knitted fabrics were compared to standard 1 × 1 rib and plain woven fabrics made from the same material. All samples were tested for physical (grammage, air permeability), morphological (number of stitches per centimetre in wale and course directions and number of stitches per square centimetre, cover factor) and mechanical (uniaxial and multidirectional tensile behaviour) properties. Grammage was used as a reference parameter to render the results comparable. The results show that the innovative fabrics are less stretchable than the standard knitted fabrics, especially in the course direction, therefore more rigid in this direction. Furthermore, they can be mechanically balanced in course and wale directions, which is unexpected for knitted fabrics. The innovative knitted fabrics are thicker than the standard knitted fabrics for the same grammage and have a lower number of stitches per square centimetre, enabling higher production rates. Due to their lower cover factor, the innovative fabrics are expected to be easier to impregnate by resin for composite applications than the standard knitted fabrics. Based on these results and the ability to increase knitting productivity, we conclude that that this novel process can transform future processes and open the door to new markets and applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新纬编工艺:创新针织物的形态、物理和机械特性
提出了一种基于新型送纱技术的针织新工艺。它允许新结构的针织:单件针织衫在一个或两个针床和罗纹结构在两个针床在同一个编织周期,即相同的针。创新的针织面料与标准的1 × 1罗纹和由相同材料制成的平纹机织物进行了比较。所有样品都进行了物理(克重、透气性)、形态(每厘米的缝数、方向和每平方厘米的缝数、覆盖系数)和机械(单轴和多向拉伸行为)性能测试。gramage作为参考参数,使结果具有可比性。结果表明,与标准针织物相比,创新织物的拉伸性能较差,特别是在课程方向上,因此在该方向上刚性更强。此外,它们还可以在方向和方向上实现机械平衡,这是针织织物无法预料的。创新的针织面料比相同克重的标准针织面料更厚,每平方厘米的针数更少,从而提高了生产率。由于其较低的覆盖系数,与标准针织物相比,创新织物在复合应用中更容易被树脂浸渍。基于这些结果和提高针织生产力的能力,我们得出结论,这种新工艺可以改变未来的工艺,并为新的市场和应用打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
期刊最新文献
Analysis and modeling for the dynamics of the nipper mechanism considering jaw’s impacts Effect of sizing agents on tensile properties of carbon fiber filament wound structures Research on the function of single jersey based on the 3D channel structure Study on thermal comfort of aloe viscose seamless knits Effects of inter-yarn friction on responses of woven fabrics with different weaves to a low-velocity impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1