Integrated Convolution Network for ISAR Imaging and Target Recognition

Haoze Du;Peishuang Ni;Jianlai Chen;Shuai Ma;Hui Zhang;Gang Xu
{"title":"Integrated Convolution Network for ISAR Imaging and Target Recognition","authors":"Haoze Du;Peishuang Ni;Jianlai Chen;Shuai Ma;Hui Zhang;Gang Xu","doi":"10.1109/JMASS.2023.3325526","DOIUrl":null,"url":null,"abstract":"Recently, inverse synthetic aperture radar (ISAR) image recognition using deep learning (DL) technology is developed rapidly. However, the imaging and recognition processing is independent of each other, and the recognition network cannot fully capture target features from the radar data. Accordingly, this article proposes an integrated convolution network for ISAR imaging and target recognition, named IITR-Net. In the scheme, a DL imaging module is designed for ISAR imaging instead of using the traditional imaging algorithms, which can be cascaded with the recognition network. Thus, the proposed IITR-Net can realize the end-to-end training using the echo data as input. Moreover, the joint backpropagation process is derived for learnable parameters of the imaging module. In the experimental analysis, the proposed IITR-Net can achieve higher classification accuracy than current recognition frameworks. It implies that the IITR-Net can learn more deep features of the target, which improves the performance of recognition.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"4 4","pages":"431-437"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10287562/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, inverse synthetic aperture radar (ISAR) image recognition using deep learning (DL) technology is developed rapidly. However, the imaging and recognition processing is independent of each other, and the recognition network cannot fully capture target features from the radar data. Accordingly, this article proposes an integrated convolution network for ISAR imaging and target recognition, named IITR-Net. In the scheme, a DL imaging module is designed for ISAR imaging instead of using the traditional imaging algorithms, which can be cascaded with the recognition network. Thus, the proposed IITR-Net can realize the end-to-end training using the echo data as input. Moreover, the joint backpropagation process is derived for learnable parameters of the imaging module. In the experimental analysis, the proposed IITR-Net can achieve higher classification accuracy than current recognition frameworks. It implies that the IITR-Net can learn more deep features of the target, which improves the performance of recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成卷积网络用于ISAR成像和目标识别
近年来,利用深度学习技术进行逆合成孔径雷达(ISAR)图像识别得到了迅速发展。然而,成像和识别处理是相互独立的,识别网络不能完全从雷达数据中捕获目标特征。据此,本文提出了一种ISAR成像与目标识别的集成卷积网络,命名为IITR-Net。在该方案中,设计了一个深度学习(DL)成像模块,用于ISAR成像,而不是使用传统的成像算法,可以与识别网络级联。因此,本文提出的IITR-Net可以实现以回波数据为输入的端到端训练。推导了成像模块可学习参数的联合反向传播过程。在实验分析中,所提出的IITR-Net比现有的识别框架具有更高的分类精度。这表明IITR-Net可以学习到目标更深层的特征,从而提高了识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Journal on Miniaturization for Air and Space Systems Vol. 5 Table of Contents Front Cover The Journal of Miniaturized Air and Space Systems Broadband Miniaturized Antenna Based on Enhanced Magnetic Field Convergence in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1