Minimal physical model of the cristal Baschet

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2023-01-01 DOI:10.1051/aacus/2023041
Audrey Couineaux, Frédéric Ablitzer, François Gautier
{"title":"Minimal physical model of the cristal Baschet","authors":"Audrey Couineaux, Frédéric Ablitzer, François Gautier","doi":"10.1051/aacus/2023041","DOIUrl":null,"url":null,"abstract":"The cristal Baschet is a musical instrument created during the 1950’s by Bernard and Francois Baschet. It is composed of a large number of glass rods arranged in a chromatic scale. The sound produced results of vibrations induced by friction between wet fingers and the glass rods. Each glass rod is connected to an assembly of threaded shafts and a mass. Mechanical properties of this assembly determine the pitch of the note. Then vibrations are transmitted to large metal panels or cones that act as radiating elements. The manufacturing and tuning of this instrument is based on empirical knowledge and involves many parameters whose effects are not clearly understood. One of the encountered problems is the difficulty to produce sound in the high register of the instrument. In an attempt to understand the influences of these parameters on playability, a minimal physical model of the cristal Baschet is developed. It focuses on the interaction between the finger and the isolated resonator. The dynamic behavior is described by a set of modes obtained from a finite element model or from experimental modal analysis. The musician’s gesture is described by two control parameters: the velocity of the finger along the glass rod and the normal force applied by the finger on the rod. To describe the interaction between the finger and the resonator, a friction law is implemented. The influence of different parameters is studied by means of linear stability analysis and time-domain simulations. Specific criteria are developed to highlight the role of design parameters on playability.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/aacus/2023041","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The cristal Baschet is a musical instrument created during the 1950’s by Bernard and Francois Baschet. It is composed of a large number of glass rods arranged in a chromatic scale. The sound produced results of vibrations induced by friction between wet fingers and the glass rods. Each glass rod is connected to an assembly of threaded shafts and a mass. Mechanical properties of this assembly determine the pitch of the note. Then vibrations are transmitted to large metal panels or cones that act as radiating elements. The manufacturing and tuning of this instrument is based on empirical knowledge and involves many parameters whose effects are not clearly understood. One of the encountered problems is the difficulty to produce sound in the high register of the instrument. In an attempt to understand the influences of these parameters on playability, a minimal physical model of the cristal Baschet is developed. It focuses on the interaction between the finger and the isolated resonator. The dynamic behavior is described by a set of modes obtained from a finite element model or from experimental modal analysis. The musician’s gesture is described by two control parameters: the velocity of the finger along the glass rod and the normal force applied by the finger on the rod. To describe the interaction between the finger and the resonator, a friction law is implemented. The influence of different parameters is studied by means of linear stability analysis and time-domain simulations. Specific criteria are developed to highlight the role of design parameters on playability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水晶篮的最小物理模型
水晶Baschet是Bernard和Francois Baschet在20世纪50年代创作的乐器。它是由大量的玻璃棒按半音阶排列而成。这种声音是由潮湿的手指和玻璃棒之间的摩擦引起的振动产生的。每个玻璃棒连接到螺纹轴和质量的组件。该组件的机械性能决定了音符的音高。然后,振动被传送到充当辐射元件的大型金属板或锥体上。这种乐器的制造和调音是基于经验知识的,涉及许多参数,其影响尚未清楚地了解。遇到的问题之一是难以在乐器的高音域发出声音。为了理解这些参数对可玩性的影响,我们开发了一个水晶篮子的最小物理模型。它侧重于手指和隔离谐振器之间的相互作用。动力特性由一组由有限元模型或实验模态分析得到的模态来描述。音乐家的手势由两个控制参数来描述:手指沿着玻璃棒的速度和手指施加在玻璃棒上的法向力。为了描述手指和谐振器之间的相互作用,采用了摩擦定律。通过线性稳定性分析和时域仿真研究了不同参数对系统的影响。具体的标准是为了突出设计参数在可玩性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1