{"title":"Risk of incorrect choices due to uncertainty in BPS evaluations of conceptual-stage neighbourhood-scale building designs","authors":"Minu Agarwal, Luisa Pastore, Marilyne Andersen","doi":"10.1080/19401493.2023.2253458","DOIUrl":null,"url":null,"abstract":"At the conceptual-stage, building performance simulation (BPS) based evaluations are being increasingly used for tasks such as ranking of competing massing design proposals. However, such conceptual stage evaluations suffer from information deficiency in building level design attributes. The resulting uncertainty in performance evaluations raises questions regarding their usefulness for decision-making. We used a risk-based decision evaluation metric called expected opportunity loss to assess the reliability of a BPS-based ranking of conceptual stage massing schemes. We found daylighting assessments (spatial Daylight Autonomy) to be least reliable, with 22% chance of making an incorrect decision at the conceptual stage, followed by annual heating (15%) and cooling demand (8%). This work provides a structured framework for evaluating utility of conceptual stage BPS models and a purposeful basis for integration of BPS assessments in the design process, subject to level of design development.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"197 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2253458","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At the conceptual-stage, building performance simulation (BPS) based evaluations are being increasingly used for tasks such as ranking of competing massing design proposals. However, such conceptual stage evaluations suffer from information deficiency in building level design attributes. The resulting uncertainty in performance evaluations raises questions regarding their usefulness for decision-making. We used a risk-based decision evaluation metric called expected opportunity loss to assess the reliability of a BPS-based ranking of conceptual stage massing schemes. We found daylighting assessments (spatial Daylight Autonomy) to be least reliable, with 22% chance of making an incorrect decision at the conceptual stage, followed by annual heating (15%) and cooling demand (8%). This work provides a structured framework for evaluating utility of conceptual stage BPS models and a purposeful basis for integration of BPS assessments in the design process, subject to level of design development.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.