{"title":"An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events","authors":"Rebecca Cole, Ralph Evins, Matt Eames","doi":"10.1080/19401493.2023.2276711","DOIUrl":null,"url":null,"abstract":"AbstractUnder climate change, extreme heat events are projected to become more frequent and intense. With people spending approximately 90% for their time indoors and buildings having long lifetimes, it is important that the built environment is resilient to these changes. Current methods to assess building performance in a future climate typically use morphed weather files and annual metrics. We compare 30 metrics and 2 weather data sources to assess and improve the representation of extreme heat events in building simulation. We show that morphing an extreme observed year may not necessarily result in an equally extreme year under the future climate and that current annual metrics do not correlate well with heatwave severity. We suggest that weather data from climate models is more robust in representing future weather for the UK and explore the recent UKCP18 data. We propose novel metrics which are able to capture heatwave severity inside buildings.KEYWORDS: Climate changeoverheatingmetricsweather files Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDate sharing is not applicable to this study as no new data were created or analysed in this study.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19401493.2023.2276711","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractUnder climate change, extreme heat events are projected to become more frequent and intense. With people spending approximately 90% for their time indoors and buildings having long lifetimes, it is important that the built environment is resilient to these changes. Current methods to assess building performance in a future climate typically use morphed weather files and annual metrics. We compare 30 metrics and 2 weather data sources to assess and improve the representation of extreme heat events in building simulation. We show that morphing an extreme observed year may not necessarily result in an equally extreme year under the future climate and that current annual metrics do not correlate well with heatwave severity. We suggest that weather data from climate models is more robust in representing future weather for the UK and explore the recent UKCP18 data. We propose novel metrics which are able to capture heatwave severity inside buildings.KEYWORDS: Climate changeoverheatingmetricsweather files Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDate sharing is not applicable to this study as no new data were created or analysed in this study.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.