Leonela González-Vides, José Luis Hernández-Verdejo, Pilar Cañadas-Suárez
{"title":"Eye tracking in optometry: A systematic review","authors":"Leonela González-Vides, José Luis Hernández-Verdejo, Pilar Cañadas-Suárez","doi":"10.16910/jemr.16.3.3","DOIUrl":null,"url":null,"abstract":"This systematic review examines the use of eye-tracking devices in optometry, describing their main characteristics, areas of application and metrics used. Using the PRISMA method, a systematic search was performed of three databases. The search strategy identified 141 reports relevant to this topic, indicating the exponential growth over the past ten years of the use of eye trackers in optometry. Eye-tracking technology was applied in at least 12 areas of the field of optometry and rehabilitation, the main ones being optometric device technology, and the assessment, treatment, and analysis of ocular disorders. The main devices reported on were infrared light-based and had an image capture frequency of 60 Hz to 2000 Hz. The main metrics mentioned were fixations, saccadic movements, smooth pursuit, microsaccades, and pupil variables. Study quality was sometimes limited in that incomplete information was provided regarding the devices used, the study design, the methods used, participants' visual function and statistical treatment of data. While there is still a need for more research in this area, eye-tracking devices should be more actively incorporated as a useful tool with both clinical and research applications. This review highlights the robustness this technology offers to obtain objective information about a person's vision in terms of optometry and visual function, with implications for improving visual health services and our understanding of the vision process.","PeriodicalId":15813,"journal":{"name":"Journal of Eye Movement Research","volume":"65 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eye Movement Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16910/jemr.16.3.3","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This systematic review examines the use of eye-tracking devices in optometry, describing their main characteristics, areas of application and metrics used. Using the PRISMA method, a systematic search was performed of three databases. The search strategy identified 141 reports relevant to this topic, indicating the exponential growth over the past ten years of the use of eye trackers in optometry. Eye-tracking technology was applied in at least 12 areas of the field of optometry and rehabilitation, the main ones being optometric device technology, and the assessment, treatment, and analysis of ocular disorders. The main devices reported on were infrared light-based and had an image capture frequency of 60 Hz to 2000 Hz. The main metrics mentioned were fixations, saccadic movements, smooth pursuit, microsaccades, and pupil variables. Study quality was sometimes limited in that incomplete information was provided regarding the devices used, the study design, the methods used, participants' visual function and statistical treatment of data. While there is still a need for more research in this area, eye-tracking devices should be more actively incorporated as a useful tool with both clinical and research applications. This review highlights the robustness this technology offers to obtain objective information about a person's vision in terms of optometry and visual function, with implications for improving visual health services and our understanding of the vision process.
期刊介绍:
The Journal of Eye Movement Research is an open-access, peer-reviewed scientific periodical devoted to all aspects of oculomotor functioning including methodology of eye recording, neurophysiological and cognitive models, attention, reading, as well as applications in neurology, ergonomy, media research and other areas,