THE EFFECT OF A COMPOSITE CHITOSAN-SILVER(I) ION COATING ON THE CORROSION RESISTANCE OF THE COBALT-CHROMIUM-MOLYBDENUM ALLOY IN SALINE SOLUTION

IF 0.8 Q4 MATERIALS SCIENCE, BIOMATERIALS Progress on Chemistry and Application of Chitin and its Derivatives Pub Date : 2023-09-30 DOI:10.15259/pcacd.28.007
Bożena Łosiewicz, Patrycja Osak, Julian Kubisztal
{"title":"THE EFFECT OF A COMPOSITE CHITOSAN-SILVER(I) ION COATING ON THE CORROSION RESISTANCE OF THE COBALT-CHROMIUM-MOLYBDENUM ALLOY IN SALINE SOLUTION","authors":"Bożena Łosiewicz, Patrycja Osak, Julian Kubisztal","doi":"10.15259/pcacd.28.007","DOIUrl":null,"url":null,"abstract":"We determined the in vitro corrosion resistance of the composite chitosan-silver(I) [Ag(I)] ion coating on the cobalt-chromium-molybdenum (CoCrMo) dental alloy in a 0.9% sodium chloride (NaCl) solution at 37°C. We obtained the novel composite chitosan–Ag(I) ion coating by electrophoretic deposition at 20 V for 30 s at room temperature in a 2% (v/v) aqueous solution of acetic acid with 1 g dm–3 chitosan and 10 g dm–3 silver nitrate. We evaluated the chemical composition with energy dispersive spectroscopy and Fouriertransform infrared spectroscopy. We investigated surface topography and electronic properties with a scanning Kelvin probe. We determined the mechanism and kinetics of the electrochemical corrosion of the obtained coatings by electrochemical impedance spectroscopy. The Ag content in the composite chitosan–Ag(I) ion coating was 1.9 ± 1 wt.%. The cataphoretic co-deposition of chitosan and Ag(I) ions in an aqueous solution can be used to modify the CoCrMo alloy surface to obtain new coatings with antibacterial properties.","PeriodicalId":44461,"journal":{"name":"Progress on Chemistry and Application of Chitin and its Derivatives","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress on Chemistry and Application of Chitin and its Derivatives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15259/pcacd.28.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

We determined the in vitro corrosion resistance of the composite chitosan-silver(I) [Ag(I)] ion coating on the cobalt-chromium-molybdenum (CoCrMo) dental alloy in a 0.9% sodium chloride (NaCl) solution at 37°C. We obtained the novel composite chitosan–Ag(I) ion coating by electrophoretic deposition at 20 V for 30 s at room temperature in a 2% (v/v) aqueous solution of acetic acid with 1 g dm–3 chitosan and 10 g dm–3 silver nitrate. We evaluated the chemical composition with energy dispersive spectroscopy and Fouriertransform infrared spectroscopy. We investigated surface topography and electronic properties with a scanning Kelvin probe. We determined the mechanism and kinetics of the electrochemical corrosion of the obtained coatings by electrochemical impedance spectroscopy. The Ag content in the composite chitosan–Ag(I) ion coating was 1.9 ± 1 wt.%. The cataphoretic co-deposition of chitosan and Ag(I) ions in an aqueous solution can be used to modify the CoCrMo alloy surface to obtain new coatings with antibacterial properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖-银离子复合涂层对钴铬钼合金耐盐腐蚀性能的影响
测定了壳聚糖-银(I) [Ag(I)]离子复合涂层在CoCrMo牙科合金表面在0.9%氯化钠(NaCl)溶液中37℃的耐腐蚀性能。在2% (V / V)的乙酸水溶液中,用1 g dm-3壳聚糖和10 g dm-3硝酸银,在20 V下室温电泳沉积30 s,得到了新型复合壳聚糖- ag (I)离子涂层。利用能量色散光谱和傅里叶变换红外光谱对其化学成分进行了分析。我们用扫描开尔文探针研究了表面形貌和电子特性。用电化学阻抗谱法测定了镀层的电化学腐蚀机理和动力学。壳聚糖- Ag(I)离子复合涂层中Ag的含量为1.9±1 wt.%。壳聚糖和Ag(I)离子在水溶液中共沉积可用于修饰CoCrMo合金表面,获得具有抗菌性能的新型涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
19
期刊介绍: Progress in the Chemistry and Application of Chitin and its Derivatives is an annual journal focused on all aspects of production, modification, enzymology and application of chitin and its many derivatives, including chitosan. The journal publishes full-length papers as well as invited reviews. To be considered, papers must present original research that has not been published or accepted for publication elsewhere. The language of the journal will be English.
期刊最新文献
MOLECULAR DYNAMICS SIMULATIONS OF THE AFFINITY OF CHITIN AND CHITOSAN FOR COLLAGEN: THE EFFECT OF pH AND THE PRESENCE OF SODIUM AND CALCIUM CATIONS PREPARATION AND PHYSICOCHEMICAL CHARACTERISTICS OF AN IODINE AND BISMUTH CONTAINING COMPOSITE MATERIAL BASED ON CHITOSAN ON OBTAINING BINARY POLYELECTROLYTE COMPLEXES OF CHITOSAN BOMBYX MORI WITH COLLAGEN ADSORPTION OF SILVER IONS ON CHITOSAN HYDROGEL BEADS THE EFFECTS OF APPLYING CHITOSAN OF DIFFERENT MOLECULAR WEIGHTS ON THE GROWTH AND QUALITY OF KAMCHATKA BERRIES (LONICERA CAERULEA L.): PART 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1