{"title":"How spatial features affect urban rail transit prediction accuracy: a deep learning based passenger flow prediction method","authors":"Shuang Li , Xiaoxi Liang , Meina Zheng , Junlan Chen , Ting Chen , Xiucheng Guo","doi":"10.1080/15472450.2023.2279633","DOIUrl":null,"url":null,"abstract":"<div><div>Urban rail transit is an integral part of public transit, and has been extensive built in China. Previous studies have proved that the spatial features are closely related to rail transit ridership, considering a fundamental role of short-term passenger flow forecast in the urban rail operation, it is meaningful to explore how these factors affect the prediction accuracy. This study aims to find a way to improve prediction accuracy by considering spatial features of stations based on deep learning. Therefore, a CNN-LSTM model capturing the spatial and temporal features was applied and Suzhou (China) was choosing as a case study to explore the influence of three spatial features, namely relative position, location, and land use, on the prediction accuracy. The predict model used can extract spatiotemporal features and accurately predict the citywide stations, and the results show that, for the relative position, the inbound and outbound flow prediction errors of transfer stations and middle stations are the lowest, respectively. As for locational features, the more distant the station is from the city center, the more accurate the results are. For stations where land use is dominated by work and living services, the predictions are more accurate. The error rate is higher for stations whose services are mainly tourism, transportation, and leisure services. This study’s results can help operators predict the short-term passenger flow of target stations based on different demands and optimize their services on this basis.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 1032-1043"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023001093","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Urban rail transit is an integral part of public transit, and has been extensive built in China. Previous studies have proved that the spatial features are closely related to rail transit ridership, considering a fundamental role of short-term passenger flow forecast in the urban rail operation, it is meaningful to explore how these factors affect the prediction accuracy. This study aims to find a way to improve prediction accuracy by considering spatial features of stations based on deep learning. Therefore, a CNN-LSTM model capturing the spatial and temporal features was applied and Suzhou (China) was choosing as a case study to explore the influence of three spatial features, namely relative position, location, and land use, on the prediction accuracy. The predict model used can extract spatiotemporal features and accurately predict the citywide stations, and the results show that, for the relative position, the inbound and outbound flow prediction errors of transfer stations and middle stations are the lowest, respectively. As for locational features, the more distant the station is from the city center, the more accurate the results are. For stations where land use is dominated by work and living services, the predictions are more accurate. The error rate is higher for stations whose services are mainly tourism, transportation, and leisure services. This study’s results can help operators predict the short-term passenger flow of target stations based on different demands and optimize their services on this basis.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.