Inferring the number of vehicles between trajectory-observed vehicles

IF 2.8 3区 工程技术 Q3 TRANSPORTATION Journal of Intelligent Transportation Systems Pub Date : 2024-11-01 DOI:10.1080/15472450.2023.2227940
Zhiyong Wen , Xiaoxiong Weng
{"title":"Inferring the number of vehicles between trajectory-observed vehicles","authors":"Zhiyong Wen ,&nbsp;Xiaoxiong Weng","doi":"10.1080/15472450.2023.2227940","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic perception is the foundation of intelligent roads, and how to accurately perceive traffic has become a central issue for researchers. With the application of Vehicle-to-Everything communication technology, vehicle IDs, locations, velocities, and accelerations can be obtained by the Roadside Unit (RSU), i.e., trajectory-observed vehicles for the road. Inferring the number of vehicles between trajectory-observed vehicles can make traffic perception more accurate, with which the traffic can be sensed on the whole road. Thus, in the case of mixed traffic flow, a Real-Time Prediction Model was proposed, which is a novel model containing four modules: prior experience of the space headway, linear distribution of velocity and acceleration, identification of traffic shockwave, and filter. The inferred result was calculated in real time. During the test, we used US-101 lane-1 data of the Next Generation Simulation dataset and trajectory-observed vehicles with stochastic distribution for 20% penetration. The length of the study area on the US-101 highway was approximately 2100 feet, which was similar to the communication area of a single RSU. During the evaluation of the model accuracy with the real-world datasets, the error of the inferred vehicle numbers in the study area could be limited to ±5 vehicles almost. Results show that it is feasible to infer the number of vehicles between trajectory-observed vehicles. The model compensates for the shortcomings of traditional models (based on inductive loop, camera, or radar), thus providing a novel method for the traffic perception of intelligent roads.</div></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 6","pages":"Pages 816-829"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic perception is the foundation of intelligent roads, and how to accurately perceive traffic has become a central issue for researchers. With the application of Vehicle-to-Everything communication technology, vehicle IDs, locations, velocities, and accelerations can be obtained by the Roadside Unit (RSU), i.e., trajectory-observed vehicles for the road. Inferring the number of vehicles between trajectory-observed vehicles can make traffic perception more accurate, with which the traffic can be sensed on the whole road. Thus, in the case of mixed traffic flow, a Real-Time Prediction Model was proposed, which is a novel model containing four modules: prior experience of the space headway, linear distribution of velocity and acceleration, identification of traffic shockwave, and filter. The inferred result was calculated in real time. During the test, we used US-101 lane-1 data of the Next Generation Simulation dataset and trajectory-observed vehicles with stochastic distribution for 20% penetration. The length of the study area on the US-101 highway was approximately 2100 feet, which was similar to the communication area of a single RSU. During the evaluation of the model accuracy with the real-world datasets, the error of the inferred vehicle numbers in the study area could be limited to ±5 vehicles almost. Results show that it is feasible to infer the number of vehicles between trajectory-observed vehicles. The model compensates for the shortcomings of traditional models (based on inductive loop, camera, or radar), thus providing a novel method for the traffic perception of intelligent roads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推断轨迹观测车辆之间的车辆数量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.80
自引率
19.40%
发文量
51
审稿时长
15 months
期刊介绍: The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new. The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption. The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.
期刊最新文献
Adaptive graph convolutional network-based short-term passenger flow prediction for metro Adaptive green split optimization for traffic control with low penetration rate trajectory data Inferring the number of vehicles between trajectory-observed vehicles Accurate detection of vehicle, pedestrian, cyclist and wheelchair from roadside light detection and ranging sensors Evaluating the impacts of vehicle-mounted Variable Message Signs on passing vehicles: implications for protecting roadside incident and service personnel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1