Quantitative Fault Diagnostics of Hydraulic Cylinder Using Particle Filter

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-12 DOI:10.3390/machines11111019
Yakun Zhang, Andrea Vacca, Guofang Gong, Huayong Yang
{"title":"Quantitative Fault Diagnostics of Hydraulic Cylinder Using Particle Filter","authors":"Yakun Zhang, Andrea Vacca, Guofang Gong, Huayong Yang","doi":"10.3390/machines11111019","DOIUrl":null,"url":null,"abstract":"Condition-based hydraulic cylinder maintenance necessitates quantitative fault diagnostics. However, existing methods are characterized by either qualitative or limited quantitative capabilities. In this paper, a quantitative fault diagnostic method using a particle filter for hydraulic cylinders is proposed. The problem of quantitative fault diagnostics is formally formulated in a stochastic framework to assess the health/fault state, and an architecture based on joint state-parameter estimation is proposed. Through the establishment and analysis of a nonlinear dynamic model of the hydraulic cylinder, the impact of time-varying parameters on the state variables is revealed. Three fault modes of the cylinder, including friction, internal leakage, and external leakage, are theoretically identified. The proposed method allows for a simultaneous quantitative diagnosis of these three fault modes. The performance of the proposed method is evaluated using meticulously designed experiments. The results demonstrate that the mean absolute percentage errors in the parameter estimations are below 9% (accuracy exceeding 91%), thus validating its feasibility and effectiveness.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"13 7","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Condition-based hydraulic cylinder maintenance necessitates quantitative fault diagnostics. However, existing methods are characterized by either qualitative or limited quantitative capabilities. In this paper, a quantitative fault diagnostic method using a particle filter for hydraulic cylinders is proposed. The problem of quantitative fault diagnostics is formally formulated in a stochastic framework to assess the health/fault state, and an architecture based on joint state-parameter estimation is proposed. Through the establishment and analysis of a nonlinear dynamic model of the hydraulic cylinder, the impact of time-varying parameters on the state variables is revealed. Three fault modes of the cylinder, including friction, internal leakage, and external leakage, are theoretically identified. The proposed method allows for a simultaneous quantitative diagnosis of these three fault modes. The performance of the proposed method is evaluated using meticulously designed experiments. The results demonstrate that the mean absolute percentage errors in the parameter estimations are below 9% (accuracy exceeding 91%), thus validating its feasibility and effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子滤波的液压缸定量故障诊断
基于状态的液压缸维修需要定量的故障诊断。然而,现有方法的特点是要么是定性的,要么是有限的定量能力。提出了一种基于粒子滤波的液压缸定量故障诊断方法。将定量故障诊断问题形式化地表述为健康/故障状态评估的随机框架,提出了一种基于状态-参数联合估计的故障诊断体系结构。通过对液压缸非线性动力学模型的建立和分析,揭示了时变参数对状态变量的影响。从理论上确定了气缸的摩擦、内泄漏和外泄漏三种故障模式。所提出的方法允许同时定量诊断这三种故障模式。通过精心设计的实验对所提出方法的性能进行了评估。结果表明,参数估计的平均绝对百分比误差在9%以下(精度超过91%),从而验证了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1