Stephanie Chua, Janice Allison Sabang, Keng Sheng Chew, Puteri Nor Ellyza Nohuddin
{"title":"Textual Analysis of Tweets Associated with Domestic Violence","authors":"Stephanie Chua, Janice Allison Sabang, Keng Sheng Chew, Puteri Nor Ellyza Nohuddin","doi":"10.18502/ijph.v52i11.14039","DOIUrl":null,"url":null,"abstract":"Background: Domestic violence is a global public health concern as stated by World Health Organization. We aimed to conduct a textual analysis of tweets associated with domestic violence through keyword identification, word trends and word collocations. The data was obtained from Twitter, focusing on publicly available tweets written in English. The objectives are to find out if the identified keywords, word trends and word collocations can help differentiate between domestic violence-related tweets and non-domestic violence-related tweets, as well as, to analyze the textual characteristics of domestic violence-related tweets and non-domestic violence-related tweets.
 Methods: Overall, 11,041 tweets were collected using a few keywords over a period of 15 days from 22 March 2021 to 5 April 2021. A text analysis approach was used to discover the most frequent keywords used, the word trends of those keywords and the word collocations of the keywords in differentiating between domestic violence-related or non-domestic violence-related tweets.
 Results: Domestic violence-related tweets and non-domestic violence-related tweets had differentiating characteristics, despite sharing several main keywords. In particular, keywords like “domestic”, “violence” and “suicide” featured prominently in domestic-violence related tweets but not in non-domestic violence-related tweets. Significant differences could also be seen in the frequency of keywords and the word trends in the collection of the tweets.
 Conclusion: These findings are significant in helping to automate the flagging of domestic-violence related tweets and alert the authorities so that they can take proactive steps such as assisting the victims in getting medical, police and legal help as needed.","PeriodicalId":14685,"journal":{"name":"Iranian Journal of Public Health","volume":"74 5","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Public Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/ijph.v52i11.14039","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Domestic violence is a global public health concern as stated by World Health Organization. We aimed to conduct a textual analysis of tweets associated with domestic violence through keyword identification, word trends and word collocations. The data was obtained from Twitter, focusing on publicly available tweets written in English. The objectives are to find out if the identified keywords, word trends and word collocations can help differentiate between domestic violence-related tweets and non-domestic violence-related tweets, as well as, to analyze the textual characteristics of domestic violence-related tweets and non-domestic violence-related tweets.
Methods: Overall, 11,041 tweets were collected using a few keywords over a period of 15 days from 22 March 2021 to 5 April 2021. A text analysis approach was used to discover the most frequent keywords used, the word trends of those keywords and the word collocations of the keywords in differentiating between domestic violence-related or non-domestic violence-related tweets.
Results: Domestic violence-related tweets and non-domestic violence-related tweets had differentiating characteristics, despite sharing several main keywords. In particular, keywords like “domestic”, “violence” and “suicide” featured prominently in domestic-violence related tweets but not in non-domestic violence-related tweets. Significant differences could also be seen in the frequency of keywords and the word trends in the collection of the tweets.
Conclusion: These findings are significant in helping to automate the flagging of domestic-violence related tweets and alert the authorities so that they can take proactive steps such as assisting the victims in getting medical, police and legal help as needed.
期刊介绍:
Iranian Journal of Public Health has been continuously published since 1971, as the only Journal in all health domains, with wide distribution (including WHO in Geneva and Cairo) in two languages (English and Persian). From 2001 issue, the Journal is published only in English language. During the last 41 years more than 2000 scientific research papers, results of health activities, surveys and services, have been published in this Journal. To meet the increasing demand of respected researchers, as of January 2012, the Journal is published monthly. I wish this will assist to promote the level of global knowledge. The main topics that the Journal would welcome are: Bioethics, Disaster and Health, Entomology, Epidemiology, Health and Environment, Health Economics, Health Services, Immunology, Medical Genetics, Mental Health, Microbiology, Nutrition and Food Safety, Occupational Health, Oral Health. We would be very delighted to receive your Original papers, Review Articles, Short communications, Case reports and Scientific Letters to the Editor on the above mentioned research areas.