{"title":"Strengthening IoT Intrusion Detection through the HOPNET Model","authors":"Chandrababu Majjaru, Senthilkumar K.","doi":"10.58346/jowua.2023.i3.007","DOIUrl":null,"url":null,"abstract":"The rapid growth of Internet of Things (IoT) applications has raised concerns about the security of IoT communication systems, particularly due to a surge in malicious attacks leading to network disruptions and system failures. This study introduces a novel solution, the Hyper-Parameter Optimized Progressive Neural Network (HOPNET) model, designed to effectively detect intrusions in IoT communication networks. Validation using the Nsl-Kdd dataset involves meticulous data preprocessing for error rectification and feature extraction across diverse attack categories. Implemented on the Java platform, the HOPNET model undergoes comprehensive evaluation through comparative analysis with established intrusion detection methods. Results demonstrate the superiority of the HOPNET model, with improved attack prediction scores and significantly reduced processing times, highlighting the importance of advanced intrusion detection methods for enhancing IoT communication security. The HOPNET model contributes by establishing robust defense against evolving cyber threats, ensuring a safer IoT ecosystem, and paving the way for proactive security measures as the IoT landscape continues to evolve.","PeriodicalId":38235,"journal":{"name":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jowua.2023.i3.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of Internet of Things (IoT) applications has raised concerns about the security of IoT communication systems, particularly due to a surge in malicious attacks leading to network disruptions and system failures. This study introduces a novel solution, the Hyper-Parameter Optimized Progressive Neural Network (HOPNET) model, designed to effectively detect intrusions in IoT communication networks. Validation using the Nsl-Kdd dataset involves meticulous data preprocessing for error rectification and feature extraction across diverse attack categories. Implemented on the Java platform, the HOPNET model undergoes comprehensive evaluation through comparative analysis with established intrusion detection methods. Results demonstrate the superiority of the HOPNET model, with improved attack prediction scores and significantly reduced processing times, highlighting the importance of advanced intrusion detection methods for enhancing IoT communication security. The HOPNET model contributes by establishing robust defense against evolving cyber threats, ensuring a safer IoT ecosystem, and paving the way for proactive security measures as the IoT landscape continues to evolve.
期刊介绍:
JoWUA is an online peer-reviewed journal and aims to provide an international forum for researchers, professionals, and industrial practitioners on all topics related to wireless mobile networks, ubiquitous computing, and their dependable applications. JoWUA consists of high-quality technical manuscripts on advances in the state-of-the-art of wireless mobile networks, ubiquitous computing, and their dependable applications; both theoretical approaches and practical approaches are encouraged to submit. All published articles in JoWUA are freely accessible in this website because it is an open access journal. JoWUA has four issues (March, June, September, December) per year with special issues covering specific research areas by guest editors.