Exploration on the Structural, Optical, Morphological and Magnetic Properties of Hematite Nanoparticles and Their Antibacterial Activity

Rajapandi P, Viruthagiri G
{"title":"Exploration on the Structural, Optical, Morphological and Magnetic Properties of Hematite Nanoparticles and Their Antibacterial Activity","authors":"Rajapandi P, Viruthagiri G","doi":"10.54392/irjmt2353","DOIUrl":null,"url":null,"abstract":"Hematite (α-Fe2O3) nanoparticles have been prepared by the conventional chemical precipitation synthesis technique. The prepared samples were subjected to structural, morphological, optical, magnetic and antibacterial behaviours. The diffraction analysis implies that the measured crystallite size of α- Fe2O3 nanoparticles is found to be 39 nm. The UV-visible absorption spectroscopy exhibits a strong absorption around 560 nm which is characteristics of Fe2O3 nanoparticles and the calculated bandgap value is found to be 2.07 eV. The presence of iron oxide polymorphs can be demonstrated by displaying phonon modes in Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) study is used to identify the existence of functional groups and chemical structure of the synthesised Fe2O3 nanoparticles. Magnetic analysis displays hysteretic behaviour at room temperature with saturation magnetization Ms = 0.0036 emu/gm, the remanent magnetization Mr = 0.000698 emu/gm, and coercivity Hc = –0.27 Oe, respectively. The antibacterial activities of these α-Fe2O3 nanoparticles were investigated on pathogenic bacteria Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and E. coli by a zone of inhibition method.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hematite (α-Fe2O3) nanoparticles have been prepared by the conventional chemical precipitation synthesis technique. The prepared samples were subjected to structural, morphological, optical, magnetic and antibacterial behaviours. The diffraction analysis implies that the measured crystallite size of α- Fe2O3 nanoparticles is found to be 39 nm. The UV-visible absorption spectroscopy exhibits a strong absorption around 560 nm which is characteristics of Fe2O3 nanoparticles and the calculated bandgap value is found to be 2.07 eV. The presence of iron oxide polymorphs can be demonstrated by displaying phonon modes in Raman spectroscopy. Fourier-transform infrared spectroscopy (FTIR) study is used to identify the existence of functional groups and chemical structure of the synthesised Fe2O3 nanoparticles. Magnetic analysis displays hysteretic behaviour at room temperature with saturation magnetization Ms = 0.0036 emu/gm, the remanent magnetization Mr = 0.000698 emu/gm, and coercivity Hc = –0.27 Oe, respectively. The antibacterial activities of these α-Fe2O3 nanoparticles were investigated on pathogenic bacteria Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, and E. coli by a zone of inhibition method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赤铁矿纳米颗粒结构、光学、形态和磁性能及其抗菌活性的探索
采用常规化学沉淀法合成了赤铁矿(α-Fe2O3)纳米颗粒。制备的样品进行了结构,形态,光学,磁性和抗菌行为。衍射分析表明,α- Fe2O3纳米颗粒的晶粒尺寸为39 nm。紫外可见吸收光谱显示Fe2O3纳米颗粒在560nm附近有较强的吸收,计算出的带隙值为2.07 eV。氧化铁多晶的存在可以通过在拉曼光谱中显示声子模式来证明。利用傅里叶变换红外光谱(FTIR)研究了合成的Fe2O3纳米颗粒是否存在官能团和化学结构。磁分析表明,在室温条件下,饱和磁化强度Ms = 0.0036 emu/gm,剩余磁化强度Mr = 0.000698 emu/gm,矫顽力Hc = -0.27 Oe。采用区抑菌法研究了α-Fe2O3纳米颗粒对铜绿假单胞菌、蜡样芽孢杆菌、金黄色葡萄球菌和大肠杆菌的抑菌活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Advancing Fault Detection Efficiency in Wireless Power Transmission with Light GBM for Real-Time Detection Enhancement Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent Evaluation of Structural Stability of Four-Storied building using Non-Destructive Testing Techniques Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks An Ensemble Classification Model to Predict Alzheimer’s Incidence as Multiple Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1