Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent

K. C, Ram Kumar A, Selvaraj S
{"title":"Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent","authors":"K. C, Ram Kumar A, Selvaraj S","doi":"10.54392/irjmt2444","DOIUrl":null,"url":null,"abstract":"In the present investigation, computations based on density functional theory (DFT) were employed to scrutinize the molecular configurations of clascosterone. Optimization was achieved using the DFT/B3LYP method with the 6-31G (d,p) basis set to thoroughly explore its structural and spectroscopic features. Additionally, molecular electrostatic potential (MEP) and Mulliken population analyses were conducted to comprehend the bonding characteristics and reactive sites. The Hirshfeld surface highlighted predominant H•••H interactions (71.5%), followed by O•••H interactions (25.5%). The stability of the compound was confirmed through the determination of hyperconjugative interactions using Natural Bond Orbital (NBO) analysis. Furthermore, molecular docking assessed the potential biological significance of clascosterone as an antitumor agent, targeting SMAD proteins like SMAD3 and SMAD4, resulting in binding energies of -8.22 and -8.57 kcal/mol, respectively.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"88 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the present investigation, computations based on density functional theory (DFT) were employed to scrutinize the molecular configurations of clascosterone. Optimization was achieved using the DFT/B3LYP method with the 6-31G (d,p) basis set to thoroughly explore its structural and spectroscopic features. Additionally, molecular electrostatic potential (MEP) and Mulliken population analyses were conducted to comprehend the bonding characteristics and reactive sites. The Hirshfeld surface highlighted predominant H•••H interactions (71.5%), followed by O•••H interactions (25.5%). The stability of the compound was confirmed through the determination of hyperconjugative interactions using Natural Bond Orbital (NBO) analysis. Furthermore, molecular docking assessed the potential biological significance of clascosterone as an antitumor agent, targeting SMAD proteins like SMAD3 and SMAD4, resulting in binding energies of -8.22 and -8.57 kcal/mol, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于克拉司酮的结构、光谱特性、Hirshfeld 表面、供体-受体相互作用和分子对接的量子化学计算研究:一种前景广阔的抗肿瘤药物
本研究采用了基于密度泛函理论(DFT)的计算方法来仔细研究克拉司酮的分子构型。采用 6-31G (d,p) 基集的 DFT/B3LYP 方法进行了优化,以深入探讨其结构和光谱特征。此外,还进行了分子静电位(MEP)和 Mulliken 群体分析,以了解其键合特征和反应位点。Hirshfeld 表面突出显示了主要的 H-H 相互作用(71.5%),其次是 O-H 相互作用(25.5%)。利用自然键轨道(NBO)分析确定了超共轭相互作用,从而证实了该化合物的稳定性。此外,分子对接评估了克拉司酮作为抗肿瘤药物的潜在生物学意义,其靶向SMAD蛋白(如SMAD3和SMAD4)的结合能分别为-8.22和-8.57 kcal/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Advancing Fault Detection Efficiency in Wireless Power Transmission with Light GBM for Real-Time Detection Enhancement Quantum Chemical Computational Studies on the Structural Aspects, Spectroscopic Properties, Hirshfeld Surfaces, Donor-Acceptor Interactions and Molecular Docking of Clascosterone: A Promising Antitumor Agent Evaluation of Structural Stability of Four-Storied building using Non-Destructive Testing Techniques Diagnosis of COVID-19 in X-ray Images using Deep Neural Networks An Ensemble Classification Model to Predict Alzheimer’s Incidence as Multiple Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1