FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation

Leon Harz, Hendric Voß, Stefan Kopp
{"title":"FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation","authors":"Leon Harz, Hendric Voß, Stefan Kopp","doi":"10.1145/3577190.3616115","DOIUrl":null,"url":null,"abstract":"Human communication relies on multiple modalities such as verbal expressions, facial cues, and bodily gestures. Developing computational approaches to process and generate these multimodal signals is critical for seamless human-agent interaction. A particular challenge is the generation of co-speech gestures due to the large variability and number of gestures that can accompany a verbal utterance, leading to a one-to-many mapping problem. This paper presents an approach based on a Feature Extraction Infusion Network (FEIN-Z) that adopts insights from robot imitation learning and applies them to co-speech gesture generation. Building on the BC-Z architecture, our framework combines transformer architectures and Wasserstein generative adversarial networks. We describe the FEIN-Z methodology and evaluation results obtained within the GENEA Challenge 2023, demonstrating good results and significant improvements in human-likeness over the GENEA baseline. We discuss potential areas for improvement, such as refining input segmentation, employing more fine-grained control networks, and exploring alternative inference methods.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3616115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human communication relies on multiple modalities such as verbal expressions, facial cues, and bodily gestures. Developing computational approaches to process and generate these multimodal signals is critical for seamless human-agent interaction. A particular challenge is the generation of co-speech gestures due to the large variability and number of gestures that can accompany a verbal utterance, leading to a one-to-many mapping problem. This paper presents an approach based on a Feature Extraction Infusion Network (FEIN-Z) that adopts insights from robot imitation learning and applies them to co-speech gesture generation. Building on the BC-Z architecture, our framework combines transformer architectures and Wasserstein generative adversarial networks. We describe the FEIN-Z methodology and evaluation results obtained within the GENEA Challenge 2023, demonstrating good results and significant improvements in human-likeness over the GENEA baseline. We discuss potential areas for improvement, such as refining input segmentation, employing more fine-grained control networks, and exploring alternative inference methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音驱动手势生成的自回归行为克隆
人类的交流依赖于多种方式,如语言表达、面部暗示和身体手势。开发处理和生成这些多模态信号的计算方法对于无缝人机交互至关重要。一个特别的挑战是生成协同语音手势,因为伴随口头话语的手势数量和变化很大,导致一对多映射问题。本文提出了一种基于特征提取注入网络(FEIN-Z)的方法,该方法采用了机器人模仿学习的见解,并将其应用于协同语音手势生成。基于BC-Z架构,我们的框架结合了变压器架构和Wasserstein生成对抗网络。我们描述了在GENEA挑战2023中获得的FEIN-Z方法和评估结果,显示出良好的结果,并在GENEA基线上显着改善了人类相似性。我们讨论了潜在的改进领域,例如改进输入分割,采用更细粒度的控制网络,以及探索替代推理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1