Analyzing and Recognizing Interlocutors' Gaze Functions from Multimodal Nonverbal Cues

Ayane Tashiro, Mai Imamura, Shiro Kumano, Kazuhiro Otsuka
{"title":"Analyzing and Recognizing Interlocutors' Gaze Functions from Multimodal Nonverbal Cues","authors":"Ayane Tashiro, Mai Imamura, Shiro Kumano, Kazuhiro Otsuka","doi":"10.1145/3577190.3614152","DOIUrl":null,"url":null,"abstract":"A novel framework is presented for analyzing and recognizing the functions of gaze in group conversations. Considering the multiplicity and ambiguity of the gaze functions, we first define 43 nonexclusive gaze functions that play essential roles in conversations, such as monitoring, regulation, and expressiveness. Based on the defined functions, in this study, a functional gaze corpus is created, and a corpus analysis reveals several frequent functions, such as addressing and thinking while speaking and attending by listeners. Next, targeting the ten most frequent functions, we build convolutional neural networks (CNNs) to recognize the frame-based presence/absence of each gaze function from multimodal inputs, including head pose, utterance status, gaze/avert status, eyeball direction, and facial expression. Comparing different input sets, our experiments confirm that the proposed CNN using all modality inputs achieves the best performance and an F value of 0.839 for listening while looking.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel framework is presented for analyzing and recognizing the functions of gaze in group conversations. Considering the multiplicity and ambiguity of the gaze functions, we first define 43 nonexclusive gaze functions that play essential roles in conversations, such as monitoring, regulation, and expressiveness. Based on the defined functions, in this study, a functional gaze corpus is created, and a corpus analysis reveals several frequent functions, such as addressing and thinking while speaking and attending by listeners. Next, targeting the ten most frequent functions, we build convolutional neural networks (CNNs) to recognize the frame-based presence/absence of each gaze function from multimodal inputs, including head pose, utterance status, gaze/avert status, eyeball direction, and facial expression. Comparing different input sets, our experiments confirm that the proposed CNN using all modality inputs achieves the best performance and an F value of 0.839 for listening while looking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从多模态非语言线索分析和识别对话者凝视功能
提出了一种分析和识别群体对话中凝视功能的新框架。考虑到注视功能的多样性和模糊性,我们首先定义了43种非排他性注视功能,这些功能在对话中起着重要作用,如监测、调节和表达。在此基础上,本文构建了功能性凝视语料库,并通过语料库分析揭示了说话时的称呼、思考和听者的参与等功能。接下来,针对10个最常见的功能,我们构建卷积神经网络(cnn)来识别来自多模态输入的基于帧的存在/不存在的每个凝视功能,包括头部姿势、话语状态、凝视/回避状态、眼球方向和面部表情。通过对不同输入集的比较,我们的实验证实,使用所有模态输入的CNN在边听边看方面达到了最好的性能,F值为0.839。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1