Video-based Respiratory Waveform Estimation in Dialogue: A Novel Task and Dataset for Human-Machine Interaction

Takao Obi, Kotaro Funakoshi
{"title":"Video-based Respiratory Waveform Estimation in Dialogue: A Novel Task and Dataset for Human-Machine Interaction","authors":"Takao Obi, Kotaro Funakoshi","doi":"10.1145/3577190.3614154","DOIUrl":null,"url":null,"abstract":"Respiration is closely related to speech, so respiratory information is useful for improving human-machine multimodal spoken interaction from various perspectives. A machine-learning task is presented for multimodal interactive systems to improve the compatibility of the systems and promote smooth interaction with them. This “video-based respiration waveform estimation (VRWE)” task consists of two subtasks: waveform amplitude estimation and waveform gradient estimation. A dataset consisting of respiratory data for 30 participants was created for this task, and a strong baseline method based on 3DCNN-ConvLSTM was evaluated on the dataset. Finally, VRWE, especially gradient estimation, was shown to be effective in predicting user voice activity after 200 ms. These results suggest that VRWE is effective for improving human-machine multimodal interaction.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Respiration is closely related to speech, so respiratory information is useful for improving human-machine multimodal spoken interaction from various perspectives. A machine-learning task is presented for multimodal interactive systems to improve the compatibility of the systems and promote smooth interaction with them. This “video-based respiration waveform estimation (VRWE)” task consists of two subtasks: waveform amplitude estimation and waveform gradient estimation. A dataset consisting of respiratory data for 30 participants was created for this task, and a strong baseline method based on 3DCNN-ConvLSTM was evaluated on the dataset. Finally, VRWE, especially gradient estimation, was shown to be effective in predicting user voice activity after 200 ms. These results suggest that VRWE is effective for improving human-machine multimodal interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对话中基于视频的呼吸波形估计:人机交互的新任务和数据集
呼吸与语音密切相关,因此呼吸信息可以从多个角度改善人机多模态语音交互。提出了一种多模态交互系统的机器学习任务,以提高系统的兼容性,促进系统之间的平滑交互。该“基于视频的呼吸波形估计(VRWE)”任务包括波形幅度估计和波形梯度估计两个子任务。为此创建了一个由30名参与者的呼吸数据组成的数据集,并在该数据集上评估了基于3DCNN-ConvLSTM的强基线方法。最后,VRWE,特别是梯度估计,在预测200 ms后的用户语音活动方面是有效的。这些结果表明VRWE在改善人机多模态交互方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1