Implicit Search Intent Recognition using EEG and Eye Tracking: Novel Dataset and Cross-User Prediction

Mansi Sharma, Shuang Chen, Philipp Müller, Maurice Rekrut, Antonio Krüger
{"title":"Implicit Search Intent Recognition using EEG and Eye Tracking: Novel Dataset and Cross-User Prediction","authors":"Mansi Sharma, Shuang Chen, Philipp Müller, Maurice Rekrut, Antonio Krüger","doi":"10.1145/3577190.3614166","DOIUrl":null,"url":null,"abstract":"For machines to effectively assist humans in challenging visual search tasks, they must differentiate whether a human is simply glancing into a scene (navigational intent) or searching for a target object (informational intent). Previous research proposed combining electroencephalography (EEG) and eye-tracking measurements to recognize such search intents implicitly, i.e., without explicit user input. However, the applicability of these approaches to real-world scenarios suffers from two key limitations. First, previous work used fixed search times in the informational intent condition - a stark contrast to visual search, which naturally terminates when the target is found. Second, methods incorporating EEG measurements addressed prediction scenarios that require ground truth training data from the target user, which is impractical in many use cases. We address these limitations by making the first publicly available EEG and eye-tracking dataset for navigational vs. informational intent recognition, where the user determines search times. We present the first method for cross-user prediction of search intents from EEG and eye-tracking recordings and reach accuracy in leave-one-user-out evaluations - comparable to within-user prediction accuracy () but offering much greater flexibility.","PeriodicalId":93171,"journal":{"name":"Companion Publication of the 2020 International Conference on Multimodal Interaction","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Publication of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577190.3614166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For machines to effectively assist humans in challenging visual search tasks, they must differentiate whether a human is simply glancing into a scene (navigational intent) or searching for a target object (informational intent). Previous research proposed combining electroencephalography (EEG) and eye-tracking measurements to recognize such search intents implicitly, i.e., without explicit user input. However, the applicability of these approaches to real-world scenarios suffers from two key limitations. First, previous work used fixed search times in the informational intent condition - a stark contrast to visual search, which naturally terminates when the target is found. Second, methods incorporating EEG measurements addressed prediction scenarios that require ground truth training data from the target user, which is impractical in many use cases. We address these limitations by making the first publicly available EEG and eye-tracking dataset for navigational vs. informational intent recognition, where the user determines search times. We present the first method for cross-user prediction of search intents from EEG and eye-tracking recordings and reach accuracy in leave-one-user-out evaluations - comparable to within-user prediction accuracy () but offering much greater flexibility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电和眼动追踪的隐式搜索意图识别:新数据集和跨用户预测
为了让机器有效地帮助人类完成视觉搜索任务,它们必须区分人类是简单地浏览场景(导航意图)还是搜索目标对象(信息意图)。先前的研究提出结合脑电图(EEG)和眼动追踪测量来隐式识别这些搜索意图,即不需要明确的用户输入。然而,这些方法在实际场景中的适用性受到两个关键限制。首先,之前的工作在信息意图条件下使用固定的搜索时间,这与视觉搜索形成鲜明对比,视觉搜索在找到目标时自然终止。其次,结合EEG测量的方法解决了需要来自目标用户的真实训练数据的预测场景,这在许多用例中是不切实际的。我们通过制作第一个公开可用的脑电图和眼动追踪数据集来解决这些限制,这些数据集用于导航和信息意图识别,其中用户决定搜索时间。我们提出了第一种从脑电图和眼动追踪记录中进行跨用户搜索意图预测的方法,并达到了“留一个用户”评估的准确度——与用户内预测准确度()相当,但提供了更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gesture Motion Graphs for Few-Shot Speech-Driven Gesture Reenactment The UEA Digital Humans entry to the GENEA Challenge 2023 Deciphering Entrepreneurial Pitches: A Multimodal Deep Learning Approach to Predict Probability of Investment The FineMotion entry to the GENEA Challenge 2023: DeepPhase for conversational gestures generation FEIN-Z: Autoregressive Behavior Cloning for Speech-Driven Gesture Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1