Remote Sensing Landslide Monitoring Based on Machine Learning Method

Zhen Chen, Yiyang Zheng
{"title":"Remote Sensing Landslide Monitoring Based on Machine Learning Method","authors":"Zhen Chen, Yiyang Zheng","doi":"10.4236/gep.2023.1110008","DOIUrl":null,"url":null,"abstract":"The susceptibility evaluation of landslides has become one of the key environmental issues that people are concerned about. This study took the land-slides in Xishuangbanna, Yunnan Province as the study object, and selected 10 evaluation factors such as digital elevation model (DEM), slope aspect, precipitation, land use, water system, roads, population density, lithology, faults, and NDVI. Different machine learning methods were compared and studied, and the ROC (receiver operating characteristics) curve verification revealed that the accuracy of the random forest evaluation model was high. In the prediction and evaluation of the susceptibility of landslides, five risk levels were divided. After the superimposed analysis, 87.26% of the disaster points fell in the first and second susceptibility areas. The spot analysis found that the distribution of hot spots is consistent with the distribution of disaster spots. In a word, the results of this study can provide better technical support for the evaluation and early warning of landslides in Southwest China.","PeriodicalId":15859,"journal":{"name":"Journal of Geoscience and Environment Protection","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geoscience and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/gep.2023.1110008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The susceptibility evaluation of landslides has become one of the key environmental issues that people are concerned about. This study took the land-slides in Xishuangbanna, Yunnan Province as the study object, and selected 10 evaluation factors such as digital elevation model (DEM), slope aspect, precipitation, land use, water system, roads, population density, lithology, faults, and NDVI. Different machine learning methods were compared and studied, and the ROC (receiver operating characteristics) curve verification revealed that the accuracy of the random forest evaluation model was high. In the prediction and evaluation of the susceptibility of landslides, five risk levels were divided. After the superimposed analysis, 87.26% of the disaster points fell in the first and second susceptibility areas. The spot analysis found that the distribution of hot spots is consistent with the distribution of disaster spots. In a word, the results of this study can provide better technical support for the evaluation and early warning of landslides in Southwest China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习方法的滑坡遥感监测
滑坡易感性评价已成为人们关注的关键环境问题之一。以云南西双版纳滑坡为研究对象,选取数字高程模型(DEM)、坡向、降水、土地利用、水系、道路、人口密度、岩性、断层、NDVI等10个评价因子。对不同的机器学习方法进行了比较和研究,ROC (receiver operating characteristics)曲线验证表明,随机森林评价模型的准确率较高。在滑坡易感性预测与评价中,划分了5个风险等级。经叠加分析,87.26%的灾害点落在第一易感区和第二易感区。现场分析发现,热点分布与灾点分布一致。研究结果可为西南地区滑坡灾害评价与预警提供较好的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Metal Recovery Value of Municipal Solid Waste Incineration Residues: Impact of Pretreatment on Fly Ash and Bottom Ash Research on Surface Information Extraction Based on Deep Learning and Transfer Learning Research on Extraction Method of Surface Information Based on Multi-Feature Combination Such as Fractal Texture Remote Sensing Landslide Monitoring Based on Machine Learning Method Rapid Urbanization and Environment Management in Nkafu Municipality, Eastern DR Congo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1