Construction of Gene-Targeted Polymeric Microvesicles and Their In Vitro Targeted Binding Ability to Human Epidermal Growth Factor Receptor 2 (+) Breast Cancer Cells
{"title":"Construction of Gene-Targeted Polymeric Microvesicles and Their <i>In Vitro</i> Targeted Binding Ability to Human Epidermal Growth Factor Receptor 2 (+) Breast Cancer Cells","authors":"Wenbin Han, Ke Wang, Wenjing Feng","doi":"10.1166/sam.2023.4518","DOIUrl":null,"url":null,"abstract":"The objective of this research was to construct the gene-targeted polymeric microvesicles (PMVs) and investigate their In Vitro ability to bind specifically to human epidermal growth factor receptor 2 (HER-2) (+) breast cancer (BC) cells. PMVs were formed using a block copolymer, methoxy polyethylene glycol-poly(L-lactide) (mPEG-PLLA), as the shell and encapsulating liquid perfluoropentane. Plasmid DNA and biotinylated HER-2 monoclonal antibody were conjugated to form the gene-loaded HER-2-targeted PMVs for BC cells. The characterization, physicochemical properties, and antibody coupling efficiency of the PMVs were evaluated. The PMVs were then co-cultured with HER-2 (+) BT474 cells, and their ability to target and bind to HER-2 (+) BC cells was observed under a microscope. Results revealed that the average particle size (APS) of the gene-targeted PMVs was (3.92±1.01) μ m, with a uniform particle size distribution (PSD), smooth and transparent surfaces, and superior stability. The fluorescence intensity (FI) of PMVs in Group A was higher (16 vs. 9) to that in Group B, indicating a high binding rate (BR) (97.01%) between the PMVs and HER-2 monoclonal antibody. BT474 cells exhibited green fluorescence on their surface, which was stronger than that observed in SK-BR-3 cells, while no obvious green fluorescence was visualized in MDA-MB-231 cells or Hs578Bst cells. PMVs in Group A presented extensive binding to BT474 cells, mainly distributed on the cell membrane and surrounding areas. Only a few PMVs in Groups B and C were observed to bind to BT474 cells. In conclusion, the gene-loaded HER-2-targeted PMVs exhibited excellent stability and high specificity for binding to HER-2 (+) BC cells In Vitro , suggesting their potential application value.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":"22 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sam.2023.4518","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this research was to construct the gene-targeted polymeric microvesicles (PMVs) and investigate their In Vitro ability to bind specifically to human epidermal growth factor receptor 2 (HER-2) (+) breast cancer (BC) cells. PMVs were formed using a block copolymer, methoxy polyethylene glycol-poly(L-lactide) (mPEG-PLLA), as the shell and encapsulating liquid perfluoropentane. Plasmid DNA and biotinylated HER-2 monoclonal antibody were conjugated to form the gene-loaded HER-2-targeted PMVs for BC cells. The characterization, physicochemical properties, and antibody coupling efficiency of the PMVs were evaluated. The PMVs were then co-cultured with HER-2 (+) BT474 cells, and their ability to target and bind to HER-2 (+) BC cells was observed under a microscope. Results revealed that the average particle size (APS) of the gene-targeted PMVs was (3.92±1.01) μ m, with a uniform particle size distribution (PSD), smooth and transparent surfaces, and superior stability. The fluorescence intensity (FI) of PMVs in Group A was higher (16 vs. 9) to that in Group B, indicating a high binding rate (BR) (97.01%) between the PMVs and HER-2 monoclonal antibody. BT474 cells exhibited green fluorescence on their surface, which was stronger than that observed in SK-BR-3 cells, while no obvious green fluorescence was visualized in MDA-MB-231 cells or Hs578Bst cells. PMVs in Group A presented extensive binding to BT474 cells, mainly distributed on the cell membrane and surrounding areas. Only a few PMVs in Groups B and C were observed to bind to BT474 cells. In conclusion, the gene-loaded HER-2-targeted PMVs exhibited excellent stability and high specificity for binding to HER-2 (+) BC cells In Vitro , suggesting their potential application value.