Bitcoin monthly return forecast: A comparison of ARIMA and multi layer Perceptron Artificial Neural Network

IF 0.4 Q4 ECONOMICS International Review Pub Date : 2023-01-01 DOI:10.5937/intrev2302163l
Ivan Lazović, Bojan Đorđević, Marija Lukić
{"title":"Bitcoin monthly return forecast: A comparison of ARIMA and multi layer Perceptron Artificial Neural Network","authors":"Ivan Lazović, Bojan Đorđević, Marija Lukić","doi":"10.5937/intrev2302163l","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the predictive power of Auto Regressive Integrated Moving Averages (ARIMA) and Multi-Layer Perceptron Artificial Neural Networks (MLP ANN) model to short-term forecast the monthly returns of Bitcoin cryptocurrency. We evaluate the performance of two models using time series with monthly data from January 2018 to December 2021. The key parameters for the final assessment of prognostic models are the values of Root Mean Square Error-RMSE and Forecast Error-FE. The results of the short-term BTC return forecast showed better properties of composite compared to univariate time series forecasting models, i.e., higher prognostic power of the MLP ANN model compared to the selected ARIMA (1,1,3) model (lower RMSE and FE). The results point to further comparative research of prognostic models and the possibility of forming more complex and hybrid structures of neural network models in order to predict economic phenomena as accurately as possible.","PeriodicalId":43325,"journal":{"name":"International Review","volume":"57 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/intrev2302163l","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we compare the predictive power of Auto Regressive Integrated Moving Averages (ARIMA) and Multi-Layer Perceptron Artificial Neural Networks (MLP ANN) model to short-term forecast the monthly returns of Bitcoin cryptocurrency. We evaluate the performance of two models using time series with monthly data from January 2018 to December 2021. The key parameters for the final assessment of prognostic models are the values of Root Mean Square Error-RMSE and Forecast Error-FE. The results of the short-term BTC return forecast showed better properties of composite compared to univariate time series forecasting models, i.e., higher prognostic power of the MLP ANN model compared to the selected ARIMA (1,1,3) model (lower RMSE and FE). The results point to further comparative research of prognostic models and the possibility of forming more complex and hybrid structures of neural network models in order to predict economic phenomena as accurately as possible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比特币月度收益预测:ARIMA与多层感知器人工神经网络的比较
在本文中,我们比较了自回归综合移动平均线(ARIMA)和多层感知器人工神经网络(MLP ANN)模型对比特币加密货币月收益的短期预测能力。我们使用2018年1月至2021年12月的月度数据时间序列来评估两个模型的性能。预测模型最终评估的关键参数是均方根误差(rmse)和预测误差(fe)的值。与单变量时间序列预测模型相比,短期BTC收益预测结果显示出更好的复合性能,即MLP神经网络模型比所选择的ARIMA(1,1,3)模型具有更高的预测能力(RMSE和FE较低)。研究结果表明,为了尽可能准确地预测经济现象,有可能进一步对预测模型进行比较研究,并形成更复杂和混合结构的神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
50.00%
发文量
0
审稿时长
4 weeks
期刊介绍:
期刊最新文献
Social skills and aggressive behavior of adolescents State and perspectives of agriculture development in the Western Balkan countries Scientific review tourism of the Republic of Serbia: Characteristics and strategic goals of development The influence of motivation, communication, and education on the development of female entrepreneurship Cooperation between IT companies and ecosystem participants as one of the innovation-generating factors: An empirical case from Serbia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1