{"title":"A novel laser melting sampler for discrete, sub-centimeter depth-resolved analyses of stable water isotopes in ice cores","authors":"Yuko Motizuki, Yoichi Nakai, Kazuya Takahashi, Junya Hirose, Yu Vin Sahoo, Masaki Yumoto, Masayuki Maruyama, Michio Sakashita, Kiwamu Kase, Satoshi Wada, Hideaki Motoyama, Yasushige Yano","doi":"10.1017/jog.2023.52","DOIUrl":null,"url":null,"abstract":"Abstract We developed a novel laser melting sampler (LMS) for ice cores to measure the stable water isotope ratios (δ 18 O and δD) as temperature proxies at sub-centimeter depth resolutions. In this LMS system, a 2 mm diameter movable evacuation nozzle holds an optical fiber through which a laser beam irradiates the ice core. The movable nozzle intrudes into the ice core, the laser radiation meanwhile melts the ice cylindrically, and the meltwater is pumped away simultaneously through the same nozzle and transferred to a vial for analysis. To avoid isotopic fractionation of the ice through vaporization, the laser power is adjusted to ensure that the temperature of the meltwater is always kept well below its boiling point. A segment of a Dome Fuji shallow ice core (Antarctica), using the LMS, was then demonstrated to have been discretely sampled with a depth resolution as small as 3 mm: subsequent analysis of δ 18 O, δD, and deuterium excess ( d ) was consistent with results obtained by hand segmentation within measurement uncertainties. With system software to control sampling resolution, the LMS will enable us to identify temperature variations that may be detectable only at sub-centimeter resolutions in ice cores.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":"10 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jog.2023.52","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We developed a novel laser melting sampler (LMS) for ice cores to measure the stable water isotope ratios (δ 18 O and δD) as temperature proxies at sub-centimeter depth resolutions. In this LMS system, a 2 mm diameter movable evacuation nozzle holds an optical fiber through which a laser beam irradiates the ice core. The movable nozzle intrudes into the ice core, the laser radiation meanwhile melts the ice cylindrically, and the meltwater is pumped away simultaneously through the same nozzle and transferred to a vial for analysis. To avoid isotopic fractionation of the ice through vaporization, the laser power is adjusted to ensure that the temperature of the meltwater is always kept well below its boiling point. A segment of a Dome Fuji shallow ice core (Antarctica), using the LMS, was then demonstrated to have been discretely sampled with a depth resolution as small as 3 mm: subsequent analysis of δ 18 O, δD, and deuterium excess ( d ) was consistent with results obtained by hand segmentation within measurement uncertainties. With system software to control sampling resolution, the LMS will enable us to identify temperature variations that may be detectable only at sub-centimeter resolutions in ice cores.
期刊介绍:
Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.