Antagonistic fluorescent Pseudomonads: rhizobacteria with suppressive and plant growth promoting properties against Phytophthora colocasiae, the causal agent of taro leaf blight

IF 0.7 Q3 AGRONOMY Journal of Plant Protection Research Pub Date : 2023-09-19 DOI:10.24425/jppr.2023.146875
{"title":"Antagonistic fluorescent Pseudomonads: rhizobacteria with suppressive and plant growth promoting properties against Phytophthora colocasiae, the causal agent of taro leaf blight","authors":"","doi":"10.24425/jppr.2023.146875","DOIUrl":null,"url":null,"abstract":"Taro leaf blight caused by Phytophthora colocasiae affects plant health and is a major threat to taro culture in Cameroon. Chemical fertilizers used often harm the ecosystem. Plant growth-promoting rhizobacteria (PGPR) are better alternatives that increase plant growth promotion and suppress phytopathogens. In the present study, a total of 67 fluorescent Pseudomonas spp. was characterized by 17.91, 5.97, and 4.47% populations of P. fluores-cens , P. chlororaphis , and P. putida , respectively, among the most represented. More than 36% of bacteria showed antagonistic potential through the production of both diffusible and volatile compounds. Some of them (03) exhibited antagonistic activity in dual culture against P. colocasiae with a diameter greater than 13 mm. These rhizobacteria produced a significant amount of siderophore, IAA, SA, HCN, protease, lipases, and cellulases. For the pot experiment, treatment by Pseudomonas significantly increased the enzymatic activity involved in the resistance of taro, such as peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL). The two antagonists also increased plant growth parameters of taro such as chlorophyll, plant height, shoot length, total leaf surface, fresh root biomass, and fresh leaf biomass. These findings showed that fluorescent Pseudomonas have an intriguing and undeniable potential in the fight against P. colocasiae , which could lead to the development of a biopesticide in the future.","PeriodicalId":16848,"journal":{"name":"Journal of Plant Protection Research","volume":"13 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Protection Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jppr.2023.146875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Taro leaf blight caused by Phytophthora colocasiae affects plant health and is a major threat to taro culture in Cameroon. Chemical fertilizers used often harm the ecosystem. Plant growth-promoting rhizobacteria (PGPR) are better alternatives that increase plant growth promotion and suppress phytopathogens. In the present study, a total of 67 fluorescent Pseudomonas spp. was characterized by 17.91, 5.97, and 4.47% populations of P. fluores-cens , P. chlororaphis , and P. putida , respectively, among the most represented. More than 36% of bacteria showed antagonistic potential through the production of both diffusible and volatile compounds. Some of them (03) exhibited antagonistic activity in dual culture against P. colocasiae with a diameter greater than 13 mm. These rhizobacteria produced a significant amount of siderophore, IAA, SA, HCN, protease, lipases, and cellulases. For the pot experiment, treatment by Pseudomonas significantly increased the enzymatic activity involved in the resistance of taro, such as peroxidase (PO), polyphenol oxidase (PPO), and phenylalanine ammonia-lyase (PAL). The two antagonists also increased plant growth parameters of taro such as chlorophyll, plant height, shoot length, total leaf surface, fresh root biomass, and fresh leaf biomass. These findings showed that fluorescent Pseudomonas have an intriguing and undeniable potential in the fight against P. colocasiae , which could lead to the development of a biopesticide in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拮抗荧光假单胞菌:具有抑制和促进植物生长特性的根瘤菌,可抑制芋头叶枯病的病原菌疫霉
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Protection Research
Journal of Plant Protection Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
9.10%
发文量
0
审稿时长
30 weeks
期刊最新文献
Removal of lead ions from aqueous solutions by modified cellulose. Female delayed mating and shortened pairing duration reduce the reproductive performance of tea mosquito bugs ( Helopeltis bradyi) Effects of water-based extracts of peppermint ( Mentha piperita L.) and French marigold (T agetes patula L.) on the transformation of larvae and nymphs of two-spotted spider mite ( Tetranychus urticae Koch) Interaction of endophytic fungi of winter wheat seeds Microencapsulation of Eucalyptus globulus essential oil anti-fungal sachet against blue mold on peaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1