WEARABLE GAIT DEVICE FOR LONG-TERM MONITORING

IF 0.3 Q4 MULTIDISCIPLINARY SCIENCES Journal of Science and Arts Pub Date : 2023-09-30 DOI:10.46939/j.sci.arts-23.3-c01
ION CACIULA, GIORGIAN MARIUS IONITA, HENRI GEORGE COANDA, DINU COLTUC, NICOLETA ANGELESCU, FELIX ALBU, DANIELA HAGIESCU
{"title":"WEARABLE GAIT DEVICE FOR LONG-TERM MONITORING","authors":"ION CACIULA, GIORGIAN MARIUS IONITA, HENRI GEORGE COANDA, DINU COLTUC, NICOLETA ANGELESCU, FELIX ALBU, DANIELA HAGIESCU","doi":"10.46939/j.sci.arts-23.3-c01","DOIUrl":null,"url":null,"abstract":"This study describes a low-cost and easy to deploy gait monitoring system that uses an ESP32 microcontroller and an ICM-20948 module. The ESP32 microcontroller collects data from the ICM-20948 module and these data are used to train a convolutional neural network (CNN) to classify gait patterns into two categories: normal and pathological. The results show that the system can achieve a high accuracy for binary gait classification, being able to correctly classify 97.05% of the normal gait samples and 84.54% of the pathological gait samples. The power consumption of the devive was measured using a calibrated and dual-acquisition digital multimeter. The estimated operating time was around 12 hours, with a battery capacity of 1800 mAh LiPo type. Therefore, it could be used to track the gait of patients with neurological disorders or to assess the effectiveness of gait rehabilitation treatments.","PeriodicalId":54169,"journal":{"name":"Journal of Science and Arts","volume":"68 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Arts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46939/j.sci.arts-23.3-c01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study describes a low-cost and easy to deploy gait monitoring system that uses an ESP32 microcontroller and an ICM-20948 module. The ESP32 microcontroller collects data from the ICM-20948 module and these data are used to train a convolutional neural network (CNN) to classify gait patterns into two categories: normal and pathological. The results show that the system can achieve a high accuracy for binary gait classification, being able to correctly classify 97.05% of the normal gait samples and 84.54% of the pathological gait samples. The power consumption of the devive was measured using a calibrated and dual-acquisition digital multimeter. The estimated operating time was around 12 hours, with a battery capacity of 1800 mAh LiPo type. Therefore, it could be used to track the gait of patients with neurological disorders or to assess the effectiveness of gait rehabilitation treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于长期监测的可穿戴步态装置
本研究描述了一种使用ESP32微控制器和ICM-20948模块的低成本、易于部署的步态监测系统。ESP32微控制器从ICM-20948模块收集数据,这些数据用于训练卷积神经网络(CNN)将步态模式分为两类:正常和病理。结果表明,该系统对正常步态样本的正确率为97.05%,对病理步态样本的正确率为84.54%,能够达到较高的步态二值分类准确率。采用校准后的双采集数字万用表测量器件的功耗。预计工作时间约为12小时,电池容量为1800毫安时的LiPo型。因此,它可以用于跟踪神经系统疾病患者的步态或评估步态康复治疗的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Science and Arts
Journal of Science and Arts MULTIDISCIPLINARY SCIENCES-
自引率
25.00%
发文量
57
期刊最新文献
COMPLEMENTARY FAIR DOMINATION IN GRAPHS WEARABLE GAIT DEVICE FOR LONG-TERM MONITORING PSEUDO-SLANT SUBMANIFOLDS OF AN R-SASAKIAN MANIFOLD AND THEIR PROPERTIES EXPONENTIAL POLYNOMIALS AND STRATIFICATION IN THE THEORY OF ANALYTIC INEQUALITIES EXPONENTIAL TYPE INEQUALITIES AND ALMOST COMPLETE CONVERGENCE OF THE OPERATOR ESTIMATOR OF FIRST-ORDER AUTOREGRESSIVE IN HILBERT SPACE GENERATED BY WOD ERROR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1