Izatullo N. Ganiev, Jamshed H. Jayloev, Ermakhmad J. Kholov, Nargis I. Ganieva
{"title":"Effect of calcium doping on the anodic behavior of E-AlMgSi (Aldrey) conducting aluminum alloy in NaCl electrolyte medium","authors":"Izatullo N. Ganiev, Jamshed H. Jayloev, Ermakhmad J. Kholov, Nargis I. Ganieva","doi":"10.3897/j.moem.9.1.104830","DOIUrl":null,"url":null,"abstract":"The design of new materials intended for operation under severe conditions faces the task of rendering the materials corrosion resistant. The practical solution of this task is interrelated with the knowledge of corrosion protection of metals and alloys. The use of conducting aluminum alloys for the manufacture of thin wire may encounter specific problems. This is caused by the insufficient strength of these alloys and a small number of kinks before fracture. Aluminum alloys have been developed in recent years which even in a soft state have strength characteristics that allow them to be used as a conductive material. The E-AlMgSi (Aldrey) aluminum alloy is a well-known conducting alloy. This alloy is a heat-strengthened one, possessing good plasticity and high strength. After appropriate heat treatment this alloy acquires high electrical conductivity. Wires made from this alloy are almost exclusively used for air transmission lines. This work presents data on the corrosion behavior of calcium containing E-AlMgSi (Aldrey) aluminum conducting alloy in 0.03, 0.3 and 3.0% NaCl electrolyte medium. The anodic behavior of the alloy has been studied using a potentiostatic technique with a PI-50-1.1 potentiostat at a 2 mV/s potential sweep rate. Calcium doping of the E-AlMgSi (Aldrey) aluminum alloy increases its corrosion resistance by 15–20%. The corrosion, pitting and repassivation potentials of calcium doped alloys shift toward the positive region. An increase in the sodium chloride electrolyte concentration leads to a decrease in these potentials.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/j.moem.9.1.104830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The design of new materials intended for operation under severe conditions faces the task of rendering the materials corrosion resistant. The practical solution of this task is interrelated with the knowledge of corrosion protection of metals and alloys. The use of conducting aluminum alloys for the manufacture of thin wire may encounter specific problems. This is caused by the insufficient strength of these alloys and a small number of kinks before fracture. Aluminum alloys have been developed in recent years which even in a soft state have strength characteristics that allow them to be used as a conductive material. The E-AlMgSi (Aldrey) aluminum alloy is a well-known conducting alloy. This alloy is a heat-strengthened one, possessing good plasticity and high strength. After appropriate heat treatment this alloy acquires high electrical conductivity. Wires made from this alloy are almost exclusively used for air transmission lines. This work presents data on the corrosion behavior of calcium containing E-AlMgSi (Aldrey) aluminum conducting alloy in 0.03, 0.3 and 3.0% NaCl electrolyte medium. The anodic behavior of the alloy has been studied using a potentiostatic technique with a PI-50-1.1 potentiostat at a 2 mV/s potential sweep rate. Calcium doping of the E-AlMgSi (Aldrey) aluminum alloy increases its corrosion resistance by 15–20%. The corrosion, pitting and repassivation potentials of calcium doped alloys shift toward the positive region. An increase in the sodium chloride electrolyte concentration leads to a decrease in these potentials.