{"title":"Classification of spin Hall effect in two-dimensional systems","authors":"Longjun Xiang, Fuming Xu, Luyang Wang, Jian Wang","doi":"10.1007/s11467-023-1358-3","DOIUrl":null,"url":null,"abstract":"<div><p>Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":"19 3","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11467-023-1358-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.
期刊介绍:
Frontiers of Physics is an international peer-reviewed journal dedicated to showcasing the latest advancements and significant progress in various research areas within the field of physics. The journal's scope is broad, covering a range of topics that include:
Quantum computation and quantum information
Atomic, molecular, and optical physics
Condensed matter physics, material sciences, and interdisciplinary research
Particle, nuclear physics, astrophysics, and cosmology
The journal's mission is to highlight frontier achievements, hot topics, and cross-disciplinary points in physics, facilitating communication and idea exchange among physicists both in China and internationally. It serves as a platform for researchers to share their findings and insights, fostering collaboration and innovation across different areas of physics.